Back to Search Start Over

Counting spanning trees of (1, N)-periodic graphs

Authors :
Zhang, Jingyuan
Lu, Fuliang
Jin, Xian'an
Publication Year :
2023
Publisher :
arXiv, 2023.

Abstract

Let $N\geq 2$ be an integer, a (1, $N$)-periodic graph $G$ is a periodic graph whose vertices can be partitioned into two sets $V_1=\{v\mid\sigma(v)=v\}$ and $V_2=\{v\mid\sigma^i(v)\neq v\ \mbox{for any}\ 1

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....63df11d79ee4fc8d4dc830998a05c137
Full Text :
https://doi.org/10.48550/arxiv.2306.06859