Back to Search
Start Over
Counting spanning trees of (1, N)-periodic graphs
- Publication Year :
- 2023
- Publisher :
- arXiv, 2023.
-
Abstract
- Let $N\geq 2$ be an integer, a (1, $N$)-periodic graph $G$ is a periodic graph whose vertices can be partitioned into two sets $V_1=\{v\mid\sigma(v)=v\}$ and $V_2=\{v\mid\sigma^i(v)\neq v\ \mbox{for any}\ 1
- Subjects :
- FOS: Physical sciences
Mathematical Physics (math-ph)
Mathematical Physics
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....63df11d79ee4fc8d4dc830998a05c137
- Full Text :
- https://doi.org/10.48550/arxiv.2306.06859