Back to Search
Start Over
Deep learning assisted mitotic counting for breast cancer
- Source :
- Laboratory Investigation, 99, 1596-1606, Laboratory Investigation, 99, 11, pp. 1596-1606
- Publication Year :
- 2019
-
Abstract
- As part of routine histological grading, for every invasive breast cancer the mitotic count is assessed by counting mitoses in the (visually selected) region with the highest proliferative activity. Because this procedure is prone to subjectivity, the present study compares visual mitotic counting with deep learning based automated mitotic counting and fully automated hotspot selection. Two cohorts were used in this study. Cohort A comprised 90 prospectively included tumors which were selected based on the mitotic frequency scores given during routine glass slide diagnostics. This pathologist additionally assessed the mitotic count in these tumors in whole slide images (WSI) within a preselected hotspot. A second observer performed the same procedures on this cohort. The preselected hotspot was generated by a convolutional neural network (CNN) trained to detect all mitotic figures in digitized hematoxylin and eosin (HE) sections. The second cohort comprised a multicenter, retrospective TNBC cohort (n = 298), of which the mitotic count was assessed by three independent observers on glass slides. The same CNN was applied on this cohort and the absolute number of mitotic figures in the hotspot was compared to the averaged mitotic count of the observers. Baseline interobserver agreement for glass slide assessment in cohort A was good (kappa 0.689; 95% CI 0.580-0.799). Using the CNN generated hotspot in WSI, the agreement score increased to 0.814 (95% CI 0.719-0.909). Automated counting by the CNN in comparison with observers counting in the predefined hotspot region yielded an average kappa of 0.724. We conclude that manual mitotic counting is not affected by assessment modality (glass slides, WSI) and that counting mitotic figures in WSI is feasible. Using a predefined hotspot area considerably improves reproducibility. Also, fully automated assessment of mitotic score appears to be feasible without introducing additional bias or variability.
- Subjects :
- Adult
0301 basic medicine
H&E stain
Breast Neoplasms
Pathology and Forensic Medicine
Cohort Studies
Tumours of the digestive tract Radboud Institute for Health Sciences [Radboudumc 14]
03 medical and health sciences
All institutes and research themes of the Radboud University Medical Center
Deep Learning
0302 clinical medicine
Breast cancer
Mitotic Index
Humans
Medicine
Diagnosis, Computer-Assisted
Prospective Studies
Prospective cohort study
Molecular Biology
Mitosis
Grading (tumors)
Aged
Netherlands
Retrospective Studies
Observer Variation
Women's cancers Radboud Institute for Molecular Life Sciences [Radboudumc 17]
business.industry
Deep learning
Reproducibility of Results
Cell Biology
Middle Aged
medicine.disease
Women's cancers Radboud Institute for Health Sciences [Radboudumc 17]
030104 developmental biology
030220 oncology & carcinogenesis
Mitotic Figure
Female
Neural Networks, Computer
Artificial intelligence
business
Nuclear medicine
Kappa
Subjects
Details
- ISSN :
- 00236837
- Database :
- OpenAIRE
- Journal :
- Laboratory Investigation, 99, 1596-1606, Laboratory Investigation, 99, 11, pp. 1596-1606
- Accession number :
- edsair.doi.dedup.....63dd8df8a3d8646a6047dfdcd55f6115