Back to Search
Start Over
Stromal cell identity modulates vascular morphogenesis in a microvasculature-on-a-chip platform
- Source :
- Lab Chip
- Publication Year :
- 2021
- Publisher :
- Royal Society of Chemistry (RSC), 2021.
-
Abstract
- Supportive stromal cells of mesenchymal origins regulate vascular morphogenesis in developmental, pathological, and regenerative contexts, contributing to vessel formation, maturation, and long-term stability, in part via the secretion of bioactive molecules. In this work, we adapted a microfluidic lab-on-a-chip system that enables the formation and perfusion of microvascular capillary beds with connections to arteriole-scale endothelialized channels to explore how stromal cell (SC) identity influences endothelial cell (EC) morphogenesis. We compared and contrasted lung fibroblasts (LFs), dermal fibroblasts (DFs), and bone marrow-derived mesenchymal stem cells (MSCs) for their abilities to support endothelial morphogenesis and subsequent perfusion of microvascular networks formed in fibrin hydrogels within the microfluidic device. We demonstrated that while all 3 SC types supported EC morphogenesis, LFs in particular resulted in microvascular morphologies with the highest total network length, vessel diameter, and vessel interconnectivity across a range of SC-EC ratio and density conditions. Not only did LFs support robust vascular morphology, but also, they were the only SC type to support functional perfusion of the resultant capillary beds. Lastly, we identified heightened traction stress produced by LFs as a possible mechanism by which LFs enhance endothelial morphogenesis in 3D compared to other SC types examined. This study provides a unique comparison of three different SC types and their role in supporting the formation of microvasculature that could provide insights for the choice of cells for vascular cell-based therapies and the regulation of tissue-specific vasculature.
- Subjects :
- Stromal cell
Cellular differentiation
Cell
Biomedical Engineering
Morphogenesis
Neovascularization, Physiologic
Bioengineering
02 engineering and technology
Biochemistry
Article
Neovascularization
03 medical and health sciences
Lab-On-A-Chip Devices
medicine
Secretion
030304 developmental biology
0303 health sciences
Chemistry
Mesenchymal stem cell
Cell Differentiation
General Chemistry
021001 nanoscience & nanotechnology
Cell biology
Endothelial stem cell
medicine.anatomical_structure
Microvessels
Stromal Cells
medicine.symptom
0210 nano-technology
Subjects
Details
- ISSN :
- 14730189 and 14730197
- Volume :
- 21
- Database :
- OpenAIRE
- Journal :
- Lab on a Chip
- Accession number :
- edsair.doi.dedup.....6398efbf36172dd57ca7f10c1cc57c72