Back to Search Start Over

Stromal cell identity modulates vascular morphogenesis in a microvasculature-on-a-chip platform

Authors :
Brendon M. Baker
Andrew J. Putnam
David S. Cleveland
Yen Peng Kong
William Y. Wang
Emily A. Margolis
Jeffrey A. Beamish
Source :
Lab Chip
Publication Year :
2021
Publisher :
Royal Society of Chemistry (RSC), 2021.

Abstract

Supportive stromal cells of mesenchymal origins regulate vascular morphogenesis in developmental, pathological, and regenerative contexts, contributing to vessel formation, maturation, and long-term stability, in part via the secretion of bioactive molecules. In this work, we adapted a microfluidic lab-on-a-chip system that enables the formation and perfusion of microvascular capillary beds with connections to arteriole-scale endothelialized channels to explore how stromal cell (SC) identity influences endothelial cell (EC) morphogenesis. We compared and contrasted lung fibroblasts (LFs), dermal fibroblasts (DFs), and bone marrow-derived mesenchymal stem cells (MSCs) for their abilities to support endothelial morphogenesis and subsequent perfusion of microvascular networks formed in fibrin hydrogels within the microfluidic device. We demonstrated that while all 3 SC types supported EC morphogenesis, LFs in particular resulted in microvascular morphologies with the highest total network length, vessel diameter, and vessel interconnectivity across a range of SC-EC ratio and density conditions. Not only did LFs support robust vascular morphology, but also, they were the only SC type to support functional perfusion of the resultant capillary beds. Lastly, we identified heightened traction stress produced by LFs as a possible mechanism by which LFs enhance endothelial morphogenesis in 3D compared to other SC types examined. This study provides a unique comparison of three different SC types and their role in supporting the formation of microvasculature that could provide insights for the choice of cells for vascular cell-based therapies and the regulation of tissue-specific vasculature.

Details

ISSN :
14730189 and 14730197
Volume :
21
Database :
OpenAIRE
Journal :
Lab on a Chip
Accession number :
edsair.doi.dedup.....6398efbf36172dd57ca7f10c1cc57c72