Back to Search
Start Over
Compositional variations of the lunar crust: Results from radiative transfer modeling of central peak spectra
- Source :
- Journal of Geophysical Research, Journal of Geophysical Research, American Geophysical Union, 2009, 114 (E9), pp.E09001. ⟨10.1029/2008JE003282⟩, Journal of Geophysical Research, American Geophysical Union, 2009, 114 (E9), ⟨10.1029/2008JE003282⟩
- Publication Year :
- 2009
- Publisher :
- American Geophysical Union (AGU), 2009.
-
Abstract
- International audience; [1] We present model mineralogy of impact crater central peaks combined with crustal thickness and crater central peak depth of origin models to report multiple perspectives of lunar crustal composition with depth. Here we report the analyses of 55 impact crater central peaks and how their compositions directly relate to the lunar highlands sample suite. A radiative transfer model is used to analyze Clementine visible plus near-infrared spectra to place compositional constraints on these central peak materials. Central peaks analyzed are dominantly magnesian-and plagioclase-poor; strong compositional similarities to lunar Mg-suite materials are evident. Relative to crustal thickness estimates, central peak mineralogy becomes more plagioclase-rich as the crust thickens. Relative to the crust-mantle boundary, the origin of peaks with dominantly mafic mineralogy are confined to the lower crust and primarily within the South-Pole Aitken and Procellarum KREEP Terranes (PKT); additionally, central peaks with anorthositic mineralogy (>60 vol % plagioclase) are transported to the surface from all depths in the crustal column and confined to the Feldspathic Highlands Terrane (FHT). The discovery of mafic and magnesian materials, consistent with Mg-suite rocks of the sample collection, in all lunar terranes suggests that the process and sources that give rise to these types of rocks is not unique to the PKT and not necessarily dependent on incompatible elements for formation. The identification of ferroan and magnesian anorthositic material near the crust-mantle boundary of the FHT is also inconsistent with an increasing mafic/feldspar ratio and Mg' with depth in the crust. Citation: Cahill, J. T. S., P. G. Lucey, and M. A. Wieczorek (2009), Compositional variations of the lunar crust: Results from radiative transfer modeling of central peak spectra
- Subjects :
- Atmospheric Science
010504 meteorology & atmospheric sciences
Geochemistry
Soil Science
KREEP
Aquatic Science
010502 geochemistry & geophysics
Oceanography
01 natural sciences
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology
Impact crater
Geochemistry and Petrology
Earth and Planetary Sciences (miscellaneous)
ComputingMilieux_MISCELLANEOUS
0105 earth and related environmental sciences
Earth-Surface Processes
Water Science and Technology
Terrane
Ecology
Paleontology
Forestry
Crust
Geophysics
Geology of the Moon
Lunar magma ocean
Space and Planetary Science
Sample collection
Mafic
Geology
Subjects
Details
- ISSN :
- 01480227 and 21562202
- Volume :
- 114
- Database :
- OpenAIRE
- Journal :
- Journal of Geophysical Research
- Accession number :
- edsair.doi.dedup.....6377470cc7553e9ac6aa37728a2c1367
- Full Text :
- https://doi.org/10.1029/2008je003282