Back to Search Start Over

Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin

Authors :
Sakthivel Sadayappan
Amanda C Garfinkel
Barbara McDonough
Jonathan G. Seidman
Angela C. Tai
Mingyue Lun
Joshua M. Gorham
Jianming Jiang
Thomas L. Lynch
Christopher N. Toepfer
Christine E. Seidman
James W. McNamara
Dan Liao
Hugh Watkins
Ida G. Lunde
Hiroko Wakimoto
Charles Redwood
Publication Year :
2019
Publisher :
American Association for the Advancement of Science, 2019.

Abstract

The mechanisms by which truncating mutations in MYBPC3 (encoding cardiac myosin-binding protein C; cMyBPC) or myosin missense mutations cause hypercontractility and poor relaxation in hypertrophic cardiomyopathy (HCM) are incompletely understood. Using genetic and biochemical approaches, we explored how depletion of cMyBPC altered sarcomere function. We demonstrated that stepwise loss of cMyBPC resulted in reciprocal augmentation of myosin contractility. Direct attenuation of myosin function, via a damaging missense variant (F764L) that causes dilated cardiomyopathy (DCM), normalized the increased contractility from cMyBPC depletion. Depletion of cMyBPC also altered dynamic myosin conformations during relaxation, enhancing the myosin state that enables ATP hydrolysis and thin filament interactions while reducing the super relaxed conformation associated with energy conservation. MYK-461, a pharmacologic inhibitor of myosin ATPase, rescued relaxation deficits and restored normal contractility in mouse and human cardiomyocytes with MYBPC3 mutations. These data define dosage-dependent effects of cMyBPC on myosin that occur across the cardiac cycle as the pathophysiologic mechanisms by which MYBPC3 truncations cause HCM. Therapeutic strategies to attenuate cMyBPC activity may rescue depressed cardiac contractility in patients with DCM, whereas inhibiting myosin by MYK-461 should benefit the substantial proportion of patients with HCM with MYBPC3 mutations.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....634debf74b6bdb45f4e1b790aa151bb7
Full Text :
https://doi.org/10.1126/scitranslmed.aat1199