Back to Search
Start Over
Accuracy and utility of using administrative healthcare databases to identify people with epilepsy: a protocol for a systematic review and meta-analysis
- Source :
- BMJ Open
- Publication Year :
- 2018
- Publisher :
- BMJ, 2018.
-
Abstract
- Introduction In an increasingly digital age for healthcare around the world, administrative data have become rich and accessible tools for potentially identifying and monitoring population trends in diseases including epilepsy. However, it remains unclear (1) how accurate administrative data are at identifying epilepsy within a population and (2) the optimal algorithms needed for administrative data to correctly identify people with epilepsy within a population. To address this knowledge gap, we will conduct a novel systematic review of all identified studies validating administrative healthcare data in epilepsy identification. We provide here a protocol that will outline the methods and analyses planned for the systematic review. Methods and analysis The systematic review described in this protocol will be conducted to follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. MEDLINE and Embase will be searched for studies validating administrative data in epilepsy published from 1975 to current (01 June 2018). Included studies will validate the International Classification of Disease (ICD), Ninth Revision (ICD-9) onwards (ie, ICD-9 code 345 and ICD-10 codes G40–G41) as well as other non-ICD disease classification systems used, such as Read Codes in the UK. The primary outcome will be providing pooled estimates of accuracy for identifying epilepsy within the administrative databases validated using sensitivity, specificity, positive and negative predictive values, and area under the receiver operating characteristic curves. Heterogeneity will be assessed using the I2 statistic and descriptive analyses used where this is present. The secondary outcome will be the optimal administrative data algorithms for correctly identifying epilepsy. These will be identified using multivariable logistic regression models. 95% confidence intervals will be quoted throughout. We will make an assessment of risk of bias, quality of evidence, and completeness of reporting for included studies. Ethics and dissemination Ethical approval is not required as primary data will not be collected. Results will be disseminated in peer-reviewed journals, conference presentations and in press releases. PROSPERO registration CRD42017081212.
- Subjects :
- Databases, Factual
Population
MEDLINE
algorithms
computer.software_genre
03 medical and health sciences
0302 clinical medicine
Meta-Analysis as Topic
International Classification of Diseases
Read codes
Positive predicative value
Health care
Protocol
Humans
Medicine
030212 general & internal medicine
education
Statistic
validation studies
education.field_of_study
Epilepsy
Database
business.industry
General Medicine
Checklist
Data Accuracy
Observational Studies as Topic
Systematic review
Neurology
Research Design
Meta-analysis
factual database
administrative claims
business
computer
Medical Informatics
030217 neurology & neurosurgery
Systematic Reviews as Topic
Subjects
Details
- ISSN :
- 20446055
- Volume :
- 8
- Database :
- OpenAIRE
- Journal :
- BMJ Open
- Accession number :
- edsair.doi.dedup.....634c726c1f5c207496ba945b6e25baf8