Back to Search Start Over

Metal–Organic Framework Nanoparticles for Ameliorating Breast Cancer-Associated Osteolysis

Authors :
Daishun Ling
Zuoxing Wu
Xiankun Cao
Chi Yang
An Qin
Wenxin He
Qian Li
Yao Fu
Xi Hu
Yichuan Pang
Chunhai Fan
Xueqian Kong
Weicheng Cao
Xiaochen Sun
Chen Li
Source :
Nano Letters. 20:829-840
Publication Year :
2020
Publisher :
American Chemical Society (ACS), 2020.

Abstract

Breast cancer metastases to bone poses a significant challenge for the administration of treatment strategies. The bone microenvironment, metastatic tumor cells, osteoclasts, and tumor-associated macrophages (TAMs) all play crucial and synergistic roles in creating a favorable environment for the proliferation, progression, and survival of the metastatic tumor, which in turn induces osteoclast-mediated bone destruction. In this study, we functionalized immunostimulatory cytosine-phosphate-guanosine (CpG)-loaded metal-organic framework (MOF) nanoparticles with bone targeting capabilities by surface modification with FDA approved antiresorptive bisphosphonate, zoledronic acid (ZOL). The functionalized bone targeting immunostimulatory MOF (BT-isMOF) nanoparticles demonstrates strong binding to calcium phosphate in vitro and exhibits specific targeting and accumulation in bone tissues in vivo. In vitro cellular and biochemical analyses demonstrated that the BT-isMOF nanoparticles could potently inhibit osteoclast formation and concomitantly induce macrophages polarization toward the M1 pro-inflammatory phenotype. Finally, using the intratibial murine model of breast cancer bone metastasis, we showed that the administration of BT-isMOF nanoparticles significantly suppressed osteoclast-mediated bone destruction and enhanced polarization of tumor-resident macrophages to M1 phenotype. Together, our data provides promising evidence for the potential therapeutic application of the BT-isMOF nanoparticles in the treatment of breast cancer bone metastases.

Details

ISSN :
15306992 and 15306984
Volume :
20
Database :
OpenAIRE
Journal :
Nano Letters
Accession number :
edsair.doi.dedup.....6320be8604d63f61c989943d50fd0b62