Back to Search Start Over

A new equation of state for dense hydrogen-helium mixtures

Authors :
François Soubiran
S. Mazevet
Gilles Chabrier
Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE)
École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE)
École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Source :
The Astrophysical Journal, The Astrophysical Journal, 2019, 872 (1), ⟨10.3847/1538-4357/aaf99f⟩, The Astrophysical Journal, American Astronomical Society, 2019, 872 (1), ⟨10.3847/1538-4357/aaf99f⟩
Publication Year :
2019

Abstract

We present a new equation of state (EOS) for dense hydrogen/helium mixtures which covers a range of densities from $10^{-8}$ to $10^6$ g.cm$^{-3}$, pressures from $10^{-9}$ to $10^{13}$ GPa and temperatures from $10^{2}$ to $10^{8}$ K. The calculations combine the EOS of Saumon, Chabrier & vanHorn (1995) in the low density, low temperature molecular/atomic domain, the EOS of Chabrier & Potekhin (1998) in the high-density, high-temperature fully ionized domain, the limits of which differ for H and He, and ab initio quantum molecular dynamics (QMD) calculations in the intermediate density and temperature regime, characteristic of pressure dissociation and ionization. The EOS for the H/He mixture is based on the so-called additive volume law and thus does not take into account the interactions between the two species. A major improvement of the present calculations over existing ones is that we calculate the entropy over the entire density-temperature domain, a necessary quantity for stellar or planetary evolution calculations. The EOS results are compared with existing experimental data, namely Hugoniot shock experiments for pure H and He, and with first principle numerical simulations for both the single elements and the mixture. This new EOS covers a wide range of physical and astrophysical conditions, from jovian planets to solar-type stars, and recovers the existing relativistic EOS at very high densities, in the domains of white dwarfs and neutron stars.<br />To appear in Astrophysical Journal. Figures in the published version will be larger

Details

Language :
English
ISSN :
0004637X and 15384357
Database :
OpenAIRE
Journal :
The Astrophysical Journal, The Astrophysical Journal, 2019, 872 (1), ⟨10.3847/1538-4357/aaf99f⟩, The Astrophysical Journal, American Astronomical Society, 2019, 872 (1), ⟨10.3847/1538-4357/aaf99f⟩
Accession number :
edsair.doi.dedup.....62b7a632fb4850dd28970aae82e51eda