Back to Search
Start Over
On the Fourth Power Moment of the Error Term for the Divisor Problem with Congruence Conditions
- Publication Year :
- 2017
- Publisher :
- arXiv, 2017.
-
Abstract
- Let $d(n;\ell_1,M_1,\ell_2,M_2)$ denote the number of factorizations $n=n_1n_2$, where each of the factors $n_i\in\mathbb{N}$ belongs to a prescribed congruence class $\ell_i\bmod M_i\,(i=1,2)$. Let $\Delta(x;\ell_1,M_1,\ell_2,M_2)$ be the error term of the asymptotic formula of $\sum\limits_{n\leqslant x}d(n;\ell_1,M_1,\ell_2,M_2)$. In this paper, we establish an asymptotic formula of the fourth power moment of $\Delta(M_1M_2x;\ell_1,M_1,\ell_2,M_2)$ and prove that \begin{equation*} \int_1^T\Delta^4(M_1M_2x;\ell_1,M_1,\ell_2,M_2)\mathrm{d}x=\frac{1}{32\pi^4}C_4\Big(\frac{\ell_1}{M_1},\frac{\ell_2}{M_2}\Big) T^2+O(T^{2-\vartheta_4+\varepsilon}), \end{equation*} with $\vartheta_4=1/8$, which improves the previous value $\theta_4=3/28$ of K. Liu.<br />Comment: 21 pages
- Subjects :
- Mathematics::Functional Analysis
Algebra and Number Theory
Mathematics - Number Theory
Fourth power
Computer Science::Information Retrieval
010102 general mathematics
Astrophysics::Instrumentation and Methods for Astrophysics
Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)
Divisor (algebraic geometry)
Term (logic)
01 natural sciences
Combinatorics
Moment (mathematics)
Statistics::Machine Learning
0103 physical sciences
FOS: Mathematics
Computer Science::General Literature
Congruence (manifolds)
Congruence class
Asymptotic formula
010307 mathematical physics
Number Theory (math.NT)
0101 mathematics
Mathematics
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....628d3384fd2d03090faf42eec46c26f0
- Full Text :
- https://doi.org/10.48550/arxiv.1711.10808