Back to Search Start Over

Revisiting the Extended X-ray Absorption Fine Structure Fitting Procedure through a Machine Learning-Based Approach

Authors :
Dirk De Vos
Emanuele Priola
Aram L. Bugaev
Alexander V. Soldatov
Kwinten Janssens
Alexander A. Guda
Elisa Borfecchia
Simon Smolders
Sergey A. Guda
Andrea Martini
Publication Year :
2021

Abstract

A novel approach for the analysis of extended X-ray absorption fine structure (EXAFS) spectra is developed exploiting an inverse machine learning-based algorithm. Through this approach, it is possible to explore and account for, in a precise way, the nonlinear geometry dependence of the photoelectron backscattering phases and amplitudes of single and multiple scattering paths. In addition, the determined parameters are directly related to the 3D atomic structure, without the need to use complex parametrization as in the classical fitting approach. The applicability of the approach, its potential and the advantages over the classical fit were demonstrated by fitting the EXAFS data of two molecular systems, namely, the KAu (CN)2 and the [RuCl2(CO)3]2 complexes. ispartof: JOURNAL OF PHYSICAL CHEMISTRY A vol:125 issue:32 pages:7080-7091 ispartof: location:United States status: published

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....62863455585b779844f5184b2fc784e1