Back to Search
Start Over
Effect of Pre-Processing Storage Condition of Cell Culture-Conditioned Medium on Extracellular Vesicles Derived from Human Umbilical Cord-Derived Mesenchymal Stromal Cells
- Source :
- International Journal of Molecular Sciences; Volume 23; Issue 14; Pages: 7716
- Publication Year :
- 2022
- Publisher :
- Multidisciplinary Digital Publishing Institute, 2022.
-
Abstract
- EVs can be isolated from a conditioned medium derived from mesenchymal stromal cells (MSCs), yet the effect of the pre-processing storage condition of the cell culture-conditioned medium prior to EV isolation is not well-understood. Since MSCs are already in clinical trials, the GMP-grade of the medium which is derived from their manufacturing might have the utility for preclinical testing, and perhaps, for clinical translation, so the impact of pre-processing storage condition on EV isolation is a barrier for utilization of this MSC manufacturing by-product. To address this problem, the effects of the pre-processing storage conditions on EV isolation, characterization, and function were assessed using a conditioned medium (CM) derived from human umbilical cord-derived MSCs (HUC-MSCs). Hypothesis: The comparison of three different pre-processing storage conditions of CM immediately processed for EV isolation would reveal differences in EVs, and thus, suggest an optimal pre-processing storage condition. The results showed that EVs derived from a CM stored at room temperature, 4 °C, −20 °C, and −80 °C for at least one week were not grossly different from EVs isolated from the CM immediately after collection. EVs derived from an in pre-processing −80 °C storage condition had a significantly reduced polydispersity index, and significantly enhanced dot blot staining, but their zeta potential, hydrodynamic size, morphology and size in transmission electron microscopy were not significantly different from EVs derived from the CM immediately processed for isolation. There was no impact of pre-processing storage condition on the proliferation of sarcoma cell lines exposed to EVs. These data suggest that the CM produced during GMP-manufacturing of MSCs for clinical applications might be stored at −80 °C prior to EV isolation, and this may enable production scale-up, and thus, and enable preclinical and clinical testing, and EV lot qualification.
- Subjects :
- Organic Chemistry
Cell Culture Techniques
Mesenchymal Stem Cells
General Medicine
Catalysis
Umbilical Cord
Computer Science Applications
Inorganic Chemistry
Extracellular Vesicles
Culture Media, Conditioned
exosomes
MSCs
extracellular vesicles
sample storage
transmission electron microscopy
nanomaterials
sarcoma cell proliferation
Humans
Physical and Theoretical Chemistry
Molecular Biology
Spectroscopy
Subjects
Details
- Language :
- English
- ISSN :
- 14220067
- Database :
- OpenAIRE
- Journal :
- International Journal of Molecular Sciences; Volume 23; Issue 14; Pages: 7716
- Accession number :
- edsair.doi.dedup.....628484e4319a0d6f405e32eaaa121999
- Full Text :
- https://doi.org/10.3390/ijms23147716