Back to Search Start Over

Further Results on Arithmetic Filters for Geometric Predicates

Authors :
Olivier Devillers
Franco P. Preparata
Geometric computing (GEOMETRICA)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Department of Computer Science (Brown University)
Brown University
Source :
Computational Geometry, Computational Geometry, 1999, 13, pp.141-148. ⟨10.1016/S0925-7721(99)00011-5⟩
Publication Year :
1999
Publisher :
arXiv, 1999.

Abstract

An efficient technique to solve precision problems consists in using exact computations. For geometric predicates, using systematically expensive exact computations can be avoided by the use of filters. The predicate is first evaluated using rounding computations, and an error estimation gives a certificate of the validity of the result. In this note, we studies the statistical efficiency of filters for cosphericity predicate with an assumption of regular distribution of the points. We prove that the expected value of the polynomial corresponding to the in sphere test is greater than epsilon with probability O(epsilon log 1/epsilon) improving the results of a previous paper by the same authors.<br />Comment: 7 pages 2 figures presented at the 15th European Workshop Comput. Geom., 113--116, 1999 improve previous results (in other paper)

Details

ISSN :
09257721
Database :
OpenAIRE
Journal :
Computational Geometry, Computational Geometry, 1999, 13, pp.141-148. ⟨10.1016/S0925-7721(99)00011-5⟩
Accession number :
edsair.doi.dedup.....6283ac077b6df5f22222ebe3969060fa
Full Text :
https://doi.org/10.48550/arxiv.cs/9907028