Back to Search Start Over

Replication-competent adenoviruses with the type 35-derived fiber-knob region achieve reactive oxygen species-dependent cytotoxicity and produce greater toxicity than those with the type 5-derived region in pancreatic carcinoma

Authors :
Kenzo Hiroshima
Masatoshi Tagawa
Suguru Yamauchi
Ikuo Sekine
Hideaki Shimada
Masato Shingyoji
Koichiro Tatsumi
Yuji Tada
Yuanyuan Jiang
Shinya Okamoto
Takao Morinaga
Shuji Kubo
Kiyoko Kawamura
Source :
Apoptosis. 20:1587-1598
Publication Year :
2015
Publisher :
Springer Science and Business Media LLC, 2015.

Abstract

Pancreatic carcinoma is relatively resistant to chemotherapy and cell death induced by replication of adenoviruses (Ad) can be one of the therapeutic options. Transduction efficacy of conventional type 5 Ad (Ad5) is however low and the cytotoxic mechanism by replication-competent Ad was not well understood. We constructed replication-competent Ad5 of which the E1A promoter region was replaced with a transcriptional regulatory region of the midkine, the survivin or the cyclooxygenase-2 gene, all of which were expressed at a high level in human tumors. We also prepared replication-competent Ad5 that were activated with the same region but had the type 35 Ad-derived fiber-knob region (AdF35) to convert the major cellular receptor for Ad infection from the coxsackie adenovirus receptor to CD46 molecules. Replication-competent AdF35 that were activated with the exogenous region produced cytotoxic effects on human pancreatic carcinoma cells greater than the corresponding Ad5 bearing with the same regulatory region. Cells infected with the AdF35 showed cytopathic effects and increased sub-G1 fractions. Caspase-9, less significantly caspase-8 and poly (ADP-ribose) polymerase, but not caspase-3 was cleaved and expression of molecules involved in autophagy and caspase-independent cell death pathways remained unchanged. Nevertheless, H2A histone family member X molecules were phosphorylated, and N-acetyl-L-cystein, an inhibitor for reactive oxygen species, suppressed the AdF35-mediated cytotoxicity. These data indicated a novel mechanism of Ad-mediated cell death and suggest a possible clinical application of the fiber-knob modified Ad.

Details

ISSN :
1573675X and 13608185
Volume :
20
Database :
OpenAIRE
Journal :
Apoptosis
Accession number :
edsair.doi.dedup.....62663941c33e0482cbc16e4b764a46fa
Full Text :
https://doi.org/10.1007/s10495-015-1171-8