Back to Search Start Over

The Herglotz principle and Vakonomic dynamics

Authors :
Manuel Lainz
Manuel de León
Miguel C. Muñoz-Lecanda
Ministerio de Economía y Competitividad (España)
Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
Source :
Lecture Notes in Computer Science ISBN: 9783030802080, GSI, Digital.CSIC. Repositorio Institucional del CSIC, instname
Publication Year :
2021
Publisher :
Springer Nature, 2021.

Abstract

In this paper we study vakonomic dynamics on contact systems with nonlinear constraints. In order to obtain the dynamics, we consider a space of admisible paths, which are the ones tangent to a given submanifold. Then, we find the critical points of the Herglotz action on this space of paths. This dynamics can be also obtained through an extended Lagrangian, including Lagrange multiplier terms. This theory has important applications in optimal control theory for Herglotz control problems, in which the cost function is given implicitly, through an ODE, instead of by a definite integral. Indeed, these control problems can be considered as particular cases of vakonomic contact systems, and we can use the Lagrangian theory of contact systems in order to understand their symmetries and dynamics.<br />M. de León and M. Lainz acknowledge the partial finantial support from MINECO Grants MTM2016-76-072-P and the ICMAT Severo Ochoa project SEV-2015-0554. M. Lainz wishes to thank MICINN and ICMAT for a FPI-Severo Ochoa predoctoral contract PRE2018-083203. M.C. Muñoz-Lecanda acknowledges the financial support from the Spanish Ministerio de Ciencia, Innovación y Universidades project PGC2018-098265-B-C33 and the Secretary of University and Research of the Ministry of Business and Knowledge of the Catalan Government project 2017-SGR-932.

Details

ISBN :
978-3-030-80208-0
ISBNs :
9783030802080
Database :
OpenAIRE
Journal :
Lecture Notes in Computer Science ISBN: 9783030802080, GSI, Digital.CSIC. Repositorio Institucional del CSIC, instname
Accession number :
edsair.doi.dedup.....6219dfe29aa0081ee591dcd7e90426c8