Back to Search Start Over

Temporal expression of chemokines dictates the hepatic inflammatory infiltrate in a murine model of schistosomiasis

Authors :
Geoffrey N. Gobert
Yuesheng Li
Melissa L. Burke
Malcolm K. Jones
Donald P. McManus
Mary Duke
Grant A. Ramm
Source :
PLoS Neglected Tropical Diseases, PLoS Neglected Tropical Diseases, Vol 4, Iss 2, p e598 (2010)
Publication Year :
2009

Abstract

Schistosomiasis continues to be an important cause of parasitic morbidity and mortality world-wide. Determining the molecular mechanisms regulating the development of granulomas and fibrosis will be essential for understanding how schistosome antigens interact with the host environment. We report here the first whole genome microarray analysis of the murine liver during the progression of Schistosoma japonicum egg-induced granuloma formation and hepatic fibrosis. Our results reveal a distinct temporal relationship between the expression of chemokine subsets and the recruitment of cells to the infected liver. Genes up-regulated earlier in the response included T- and B-cell chemoattractants, reflecting the early recruitment of these cells illustrated by flow cytometry. The later phases of the response corresponded with peak recruitment of eosinophils, neutrophils, macrophages and myofibroblasts/hepatic stellate cells (HSCs) and the expression of chemokines with activity for these cells including CCL11 (eotaxin 1), members of the Monocyte-chemoattractant protein family (CCL7, CCL8, CCL12) and the Hepatic Stellate Cell/Fibrocyte chemoattractant CXCL1. Peak expression of macrophage chemoattractants (CCL6, CXCL14) and markers of alternatively activated macrophages (e.g. Retnla) during this later phase provides further evidence of a role for these cells in schistosome-induced pathology. Additionally, we demonstrate that CCL7 immunolocalises to the fibrotic zone of granulomas. Furthermore, striking up-regulation of neutrophil markers and the localisation of neutrophils and the neutrophil chemokine S100A8 to fibrotic areas suggest the involvement of neutrophils in S. japonicum-induced hepatic fibrosis. These results further our understanding of the immunopathogenic and, especially, chemokine signalling pathways that regulate the development of S. japonicum-induced granulomas and fibrosis and may provide correlative insight into the pathogenesis of other chronic inflammatory diseases of the liver where fibrosis is a common feature.<br />Author Summary Schistosomiasis, a disease caused by parasitic worms, is a significant cause of illness and death in the developing world. Furthermore, recent reports suggest that the global burden of disease due to schistosomiasis has been significantly underestimated. Schistosomiasis of the liver arises due to inflammation and the deposition of scar tissue around parasite eggs trapped in this organ. In the current study we analysed the gene-expression profile of the mouse liver at several time points following infection with a virulent strain of Schistosoma japonicum to better understand the mechanisms that regulate this process. Progression of disease was associated with increased expression of different groups of genes with distinct biological functions. Specifically, we identified several genes encoding chemical signalling molecules that contribute to different phases of the response by recruiting key cell types to the site of inflammation. This study represents the most comprehensive report to date of the gene expression profile in the liver during schistosomiasis. These results provide further insight into the mechanisms that regulate the development of schistosome-induced inflammation and scarring and will aid in the development of novel treatments to alleviate the burden of disease caused by this parasite.

Details

ISSN :
19352735
Volume :
4
Issue :
2
Database :
OpenAIRE
Journal :
PLoS neglected tropical diseases
Accession number :
edsair.doi.dedup.....6212fe219f3e11e0ba633289602f0674