Back to Search Start Over

Spatial Correlation of Gene Expression Measures in Tissue Microarray Core Analysis

Authors :
Mathieu Emily
Didier Morel
Raphael Marcelpoil
Olivier François
TIMB
Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 (TIMC-IMAG)
VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
Source :
Computational and Mathematical Methods in Medicine, Computational and Mathematical Methods in Medicine, Hindawi Publishing Corporation, 2005, 6 (1), pp.33-39. ⟨10.1080/10273660500035795⟩
Publication Year :
2005
Publisher :
Hindawi Limited, 2005.

Abstract

International audience; Tissue microarrays (TMAs) make possible the screening of hundreds of different tumour samples for the expression of a specific protein. Automatic features extraction procedures lead to a series of covariates corresponding to the averaged stained scores. In this article, we model the random geometry of TMA cores using voronoi tesselations. This formalism enables the computation of indices of spatial correlation of stained scores using both classical and novel approaches. The potential of these spatial statistics to correctly discriminate between diseased and non-diseased cases is evaluated through the analysis of a TMA containing samples of breast carcinoma data. The results indicate a significant improvement in the breast cancer prognosis.

Details

ISSN :
16078578, 10273662, 1748670X, and 17486718
Volume :
6
Database :
OpenAIRE
Journal :
Journal of Theoretical Medicine
Accession number :
edsair.doi.dedup.....61a99fe7635a39bb56b2a54db432b222
Full Text :
https://doi.org/10.1080/10273660500035795