Back to Search Start Over

L2,3-edges absorption spectra of a 2D complex system: a theoretical modelling

Authors :
Fernando Bartolomé
Mauro Sambi
Juan Bartolomé
Maurizio Casarin
Andrea Vittadini
Francesco Sedona
Silvia Carlotto
Diputación General de Aragón
Ministerio de Economía y Competitividad (España)
Università degli Studi di Padova
Ministero dell'Istruzione, dell'Università e della Ricerca
Source :
Digital.CSIC. Repositorio Institucional del CSIC, instname, PCCP. Physical chemistry chemical physics, 18 (2016): 28110–28116. doi:10.1039/C6CP04787D, info:cnr-pdr/source/autori:Carlotto S.; Sambi M.; Sedona F.; Vittadini A.; Bartolomé J.; Bartolomé F.; Casarin M./titolo:L2,3-edges absorption spectra of a 2D complex system: a theoretical modelling/doi:10.1039%2FC6CP04787D/rivista:PCCP. Physical chemistry chemical physics (Print)/anno:2016/pagina_da:28110/pagina_a:28116/intervallo_pagine:28110–28116/volume:18
Publication Year :
2016
Publisher :
Royal Society of Chemistry (UK), 2016.

Abstract

L-edges absorption spectra of FePc (I) and FePc(η-O) (II) on Ag(110) have been modelled using the DFT/ROCIS method. Despite disregarding the presence of the substrate, the agreement between experiment and theory is remarkable. Moreover, theoretical results confirm the fraction of II (70%) present on the surface, thus allowing a thorough assignment of each experimental spectral feature. Ground state (GS) theoretical outcomes pertaining to I and II provide an intimate understanding of the electron transfer pathway ruling the I-based catalytic oxygen reduction reaction. DFT/ROCIS outcomes indicate that the lower excitation energy (EE) side of the L intensity distributions mainly includes states having the GS number of unpaired electrons (two in I and six in II), whereas states with higher/lower spin multiplicity contribute to the L higher EE side. The occurrence of states involving metal to ligand charge transfer transitions implying low lying empty π∗ ligand-based orbitals on the L higher EE sides have been confirmed.<br />The Italian Ministry of the University and Research (PRIN-2010BNZ3F2, project DESCARTES), the University of Padova (CPDA134272/13, project S3MArTA), and the Computational Chemistry Community (C3P) of the University of Padova are kindly acknowledged. This work has been partially financed by the Spanish projects MINECO MAT2014-53921-R and DGA IMANA E34.

Details

ISSN :
14639084 and 14639076
Database :
OpenAIRE
Journal :
Physical Chemistry Chemical Physics
Accession number :
edsair.doi.dedup.....617a017f24ce71fb34566741fca7024e
Full Text :
https://doi.org/10.1039/C6CP04787D