Back to Search
Start Over
Propagating aleatory and epistemic uncertainty in land cover change prediction process
- Source :
- Ecological Informatics, Ecological Informatics, Elsevier, 2017, 37 (1), pp.24-37. ⟨10.1016/j.ecoinf.2016.11.006⟩
- Publication Year :
- 2017
- Publisher :
- Elsevier BV, 2017.
-
Abstract
- International audience; An objective of satellite remote sensing is to predict or characterize the land cover change (LCC) over time. Sometimes we are capable of describing the changes of land cover with a probability distribution. However, we need sufficient knowledge about the natural variability of these changes, which is not always possible. In general, uncertainties can be subdivided into aleatory and epistemic. The main problem is that classical probability theory does not make a clear distinction between aleatory and epistemic uncertainties in the way they are represented, i.e., both of them are described with a probability distribution. The aim of this paper is to propagate the aleatory and epistemic uncertainty associated with both input parameters (features extracted from satellite image object) and model structure of LCC prediction process using belief function theory. This will help reducing in a significant way the uncertainty about future changes of land cover. In this study, the changes prediction of land cover in Cairo region, Egypt for next 16 years (2030) is anticipated using multi-temporal Landsat TM5 satellite images in 1987 and 2014. The LCC prediction model results indicated that 15% of the agriculture and 6.5% of the desert will be urbanized in 2030. We conclude that our method based on belief function theory has a potential to reduce uncertainty and improve the prediction accuracy and is applicable in LCC analysis.
- Subjects :
- 010504 meteorology & atmospheric sciences
Operations research
Computer science
0211 other engineering and technologies
02 engineering and technology
Land cover
LCC prediction
01 natural sciences
Model structure uncertainty
Probability theory
Parameter estimation
Econometrics
Uncertainty quantification
Ecology, Evolution, Behavior and Systematics
Uncertainty analysis
Aleatory-epistemic uncertainty
021101 geological & geomatics engineering
0105 earth and related environmental sciences
Propagation of uncertainty
Ecology
Land use
Parameter modeling
Estimation theory
Applied Mathematics
Ecological Modeling
Correlation analysis
15. Life on land
Computer Science Applications
Input parameters uncertainty
Computational Theory and Mathematics
Modeling and Simulation
Uncertainty propagation
Probability distribution
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
Subjects
Details
- ISSN :
- 15749541
- Volume :
- 37
- Database :
- OpenAIRE
- Journal :
- Ecological Informatics
- Accession number :
- edsair.doi.dedup.....613e66d9c74c754aa801ff62e078936c