Back to Search
Start Over
Bats in a changing landscape: Linking occupancy and traits of a diverse montane bat community to fire regime
- Source :
- Ecology and Evolution
- Publication Year :
- 2019
- Publisher :
- John Wiley and Sons Inc., 2019.
-
Abstract
- Wildfires are increasing in incidence and severity across coniferous forests of the western United States, leading to changes in forest structure and wildlife habitats. Knowledge of how species respond to fire‐driven habitat changes in these landscapes is limited and generally disconnected from our understanding of adaptations that underpin responses to fire.We aimed to investigate drivers of occupancy of a diverse bat community in a fire‐altered landscape, while identifying functional traits that underpinned these relationships.We recorded bats acoustically at 83 sites (n = 249 recording nights) across the Plumas National Forest in the northern Sierra Nevada over 3 summers (2015–2017). We investigated relationships between fire regime, physiographic variables, forest structure and probability of bat occupancy for nine frequently detected species. We used fourth‐corner regression and RLQ analysis to identify ecomorphological traits driving species–environment relationships across 17 bat species. Traits included body mass; call frequency, bandwidth, and duration; and foraging strategy based on vegetation structure (open, edge, or clutter).Relationships between bat traits and fire regime were underpinned by adaptations to diverse forest structure. Bats with traits adapting them to foraging in open habitats, including emitting longer duration and narrow bandwidth calls, were associated with higher severity and more frequent fires, whereas bats with traits consistent with clutter tolerance were negatively associated with fire frequency and burn severity. Relationships between edge‐adapted bat species and fire were variable and may be influenced by prey preference or habitat configuration at a landscape scale.Predicted increases in fire frequency and severity in western US coniferous forests are likely to shift dominance in the bat community to open‐adapted species and those able to exploit postfire resource pulses (aquatic insects, beetles, and snags). Managing for pyrodiversity within the western United States is likely important for maintaining bat community diversity, as well as diversity of other biotic communities.
- Subjects :
- 0106 biological sciences
ecomorphology
Occupancy
Ecomorphology
Foraging
Wildlife
RLQ
010603 evolutionary biology
01 natural sciences
acoustic
03 medical and health sciences
traits
Fire ecology
Ecology, Evolution, Behavior and Systematics
030304 developmental biology
Nature and Landscape Conservation
Original Research
fourth‐corner
0303 health sciences
Ecology
Fire regime
Community
fire ecology
Geography
Habitat
western United States
community ecology
Subjects
Details
- Language :
- English
- ISSN :
- 20457758
- Volume :
- 9
- Issue :
- 9
- Database :
- OpenAIRE
- Journal :
- Ecology and Evolution
- Accession number :
- edsair.doi.dedup.....60fbbb8a61c24b2fe3d0f0c628ca2d91