Back to Search Start Over

Disruption of KIF3A in patient-derived glioblastoma cells: effects on ciliogenesis, hedgehog sensitivity, and tumorigenesis

Authors :
Gabriel De Leon
Matthew R. Sarkisian
George Ugartemendia
Benjamin Griffith
Susan L. Semple-Rowland
Brent A. Reynolds
Loic P. Deleyrolle
Duane Mitchell
Hunter S. Futch
Dorit Siebzehnrubl
Lan Hoang-Minh
Joshua J. Breunig
Source :
Oncotarget, vol 7, iss 6, Oncotarget
Publication Year :
2016
Publisher :
Impact Journals, LLC, 2016.

Abstract

// Lan B. Hoang-Minh 1, 3 , Loic P. Deleyrolle 2, 3 , Dorit Siebzehnrubl 1 , George Ugartemendia 1 , Hunter Futch 2 , Benjamin Griffith 2 , Joshua J. Breunig 5- 9 , Gabriel De Leon 2, 4 , Duane A. Mitchell 2, 3, 4 , Susan Semple-Rowland 1 , Brent A. Reynolds 2, 3 , Matthew R. Sarkisian 1, 3 1 Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA 2 Department of Neurosurgery, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA 3 Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA 4 UF Brain Tumor Immunotherapy Program, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, USA 5 Cedars-Sinai Regenerative Medicine Institute, Cedar-Sinai Medical Center, Los Angeles, California, USA 6 Samuel Oschin Comprehensive Cancer Institute, Cedar-Sinai Medical Center, Los Angeles, California, USA 7 Division of Applied Cell Biology and Physiology, Cedar-Sinai Medical Center, Los Angeles, California, USA 8 Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA 9 Department of Medicine, UCLA Geffen School of Medicine, Los Angeles, California, USA Correspondence to: Matthew R. Sarkisian, e-mail: msarkisian@ufl.edu Keywords: kinesin-2, brain tumor, cilium, intraflagellar transport, sonic hedgehog Received: July 08, 2015 Accepted: December 23, 2015 Published: January 09, 2016 ABSTRACT KIF3A, a component of the kinesin-2 motor, is necessary for the progression of diverse tumor types. This is partly due to its role in regulating ciliogenesis and cell responsiveness to sonic hedgehog (SHH). Notably, primary cilia have been detected in human glioblastoma multiforme (GBM) tumor biopsies and derived cell lines. Here, we asked whether disrupting KIF3A in GBM cells affected ciliogenesis, in vitro growth and responsiveness to SHH, or tumorigenic behavior in vivo . We used a lentiviral vector to create three patient-derived GBM cell lines expressing a dominant negative, motorless form of Kif3a (dnKif3a). In all unmodified lines, we found that most GBM cells were capable of producing ciliated progeny and that dnKif3a expression in these cells ablated ciliogenesis. Interestingly, unmodified and dnKif3a-expressing cell lines displayed differential sensitivities and pathway activation to SHH and variable tumor-associated survival following mouse xenografts. In one cell line, SHH-induced cell proliferation was prevented in vitro by either expressing dnKif3a or inhibiting SMO signaling using cyclopamine, and the survival times of mice implanted with dnKif3a-expressing cells were increased. In a second line, expression of dnKif3a increased the cells’ baseline proliferation while, surprisingly, sensitizing them to SHH-induced cell death. The survival times of mice implanted with these dnKif3a-expressing cells were decreased. Finally, expression of dnKif3a in a third cell line had no effect on cell proliferation, SHH sensitivity, or mouse survival times. These findings indicate that KIF3A is essential for GBM cell ciliogenesis, but its role in modulating GBM cell behavior is highly variable.

Details

ISSN :
19492553
Volume :
7
Database :
OpenAIRE
Journal :
Oncotarget
Accession number :
edsair.doi.dedup.....60f66abb5fa502d47cc82298a6d7768c