Back to Search
Start Over
Modeling sediment transport after ditch network maintenance of a forested peatland
- Source :
- Water Resources Research. 52:9001-9019
- Publication Year :
- 2016
- Publisher :
- American Geophysical Union (AGU), 2016.
-
Abstract
- Elevated suspended sediment (SS) loads released from peatlands after drainage operations and the resulting negative effect on the ecological status of the receiving water bodies have been widely recognized. Understanding the processes controlling erosion and sediment transport within the ditch network forms a prerequisite for adequate sediment control. While numerous experimental studies have been reported in this field, model based assessments are rare. This study presents a modeling approach to investigate sediment transport in a peatland ditch network. The transport model describes bed erosion, rain-induced bank erosion, floc deposition, and consolidation of the bed. Coupled to a distributed hydrological model, sediment transport was simulated in a 5.2 ha forestry-drained peatland catchment for two years after ditch cleaning. Comparing simulation results to measured SS concentrations suggested that the loose peat material, produced during excavation, contributed markedly to elevated SS concentrations immediately after ditch cleaning. Both snowmelt and summer rainstorms contributed critically to annual loads. Springtime peat erosion during snowmelt was driven by ditch flow whereas during summer rainfalls, bank erosion by raindrop impact was identified as an important process. Relating modeling results to observed spatial topographic changes in the ditch network was challenging and the results were difficult to verify. Nevertheless, the model has potential to identify risk areas for erosion. The results demonstrate that modeling is effective in separating the importance of different processes and complements pure experimental approaches. Modeling results can aid planning and designing efficient sediment control measures and guide the focus of experimental studies. This article is protected by copyright. All rights reserved.
- Subjects :
- Hydrology
geography
geography.geographical_feature_category
Peat
0208 environmental biotechnology
Ditch
Drainage basin
modeling
02 engineering and technology
Sediment control
peatland drainage
sediment transport
020801 environmental engineering
FLUSH model
Snowmelt
Environmental science
peat erosion
Drainage
ditch network
Sediment transport
ta218
Bank erosion
Water Science and Technology
Subjects
Details
- ISSN :
- 19447973 and 00431397
- Volume :
- 52
- Database :
- OpenAIRE
- Journal :
- Water Resources Research
- Accession number :
- edsair.doi.dedup.....60bfd349fe93f24e1c67a0cf44dd5ca9
- Full Text :
- https://doi.org/10.1002/2016wr019442