Back to Search Start Over

Modeling sediment transport after ditch network maintenance of a forested peatland

Authors :
Leena Finér
Kersti Haahti
Harri Koivusalo
Hannu Marttila
Teemu Kokkonen
Lassi Warsta
Source :
Water Resources Research. 52:9001-9019
Publication Year :
2016
Publisher :
American Geophysical Union (AGU), 2016.

Abstract

Elevated suspended sediment (SS) loads released from peatlands after drainage operations and the resulting negative effect on the ecological status of the receiving water bodies have been widely recognized. Understanding the processes controlling erosion and sediment transport within the ditch network forms a prerequisite for adequate sediment control. While numerous experimental studies have been reported in this field, model based assessments are rare. This study presents a modeling approach to investigate sediment transport in a peatland ditch network. The transport model describes bed erosion, rain-induced bank erosion, floc deposition, and consolidation of the bed. Coupled to a distributed hydrological model, sediment transport was simulated in a 5.2 ha forestry-drained peatland catchment for two years after ditch cleaning. Comparing simulation results to measured SS concentrations suggested that the loose peat material, produced during excavation, contributed markedly to elevated SS concentrations immediately after ditch cleaning. Both snowmelt and summer rainstorms contributed critically to annual loads. Springtime peat erosion during snowmelt was driven by ditch flow whereas during summer rainfalls, bank erosion by raindrop impact was identified as an important process. Relating modeling results to observed spatial topographic changes in the ditch network was challenging and the results were difficult to verify. Nevertheless, the model has potential to identify risk areas for erosion. The results demonstrate that modeling is effective in separating the importance of different processes and complements pure experimental approaches. Modeling results can aid planning and designing efficient sediment control measures and guide the focus of experimental studies. This article is protected by copyright. All rights reserved.

Details

ISSN :
19447973 and 00431397
Volume :
52
Database :
OpenAIRE
Journal :
Water Resources Research
Accession number :
edsair.doi.dedup.....60bfd349fe93f24e1c67a0cf44dd5ca9
Full Text :
https://doi.org/10.1002/2016wr019442