Back to Search
Start Over
On Dirichlet series whose coefficients are class numbers of binary quadratic forms
- Source :
- Nagoya Math. J. 142 (1996), 95-132
- Publication Year :
- 1996
- Publisher :
- Duke University Press, 1996.
-
Abstract
- For an integer d > 0 (resp. d < 0) let hd denote the number of Sl2(Z)-equivalence classes of primitive (resp. primitive positive-definite) integral binary quadratic forms of discriminant d. For where t and u are the smallest positive integral solutions of the equation t2 − du2 = 4 if d is a non-square and εd = 1 if d is a square.
- Subjects :
- 010308 nuclear & particles physics
General Mathematics
010102 general mathematics
Dirichlet L-function
Dirichlet's energy
11E45
01 natural sciences
Class number formula
11E41
Combinatorics
symbols.namesake
Dirichlet kernel
0103 physical sciences
symbols
Binary quadratic form
Quadratic field
11M41
0101 mathematics
General Dirichlet series
Dirichlet series
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 00277630
- Database :
- OpenAIRE
- Journal :
- Nagoya Math. J. 142 (1996), 95-132
- Accession number :
- edsair.doi.dedup.....60a1c95de01b2dbea77bc60f0f314f9b