Back to Search Start Over

Group V secretory phospholipase A2 reveals its role in house dust mite-induced allergic pulmonary inflammation by regulation of dendritic cell function

Authors :
Wei Xing
Joshua A. Boyce
Howard R. Katz
Daisuke Fujioka
Barbara Balestrieri
Giorgio Giannattasio
Publication Year :
2010

Abstract

We have previously shown that group V secretory phospholipase A2 (sPLA2) regulates phagocytosis of zymosan and Candida albicans by a mechanism that depends on fusion of phagosomes with late endosomes in macrophages. In this study, we report that group V sPLA2 (Pla2g5)-null mice exposed to an extract of house dust mite Dermatophagoides farinae had markedly reduced pulmonary inflammation and goblet cell metaplasia compared with wild-type (WT) mice. Pla2g5-null mice had also impaired Th2-type adaptive immune responses to D. farinae compared with WT mice. Pla2g5-null bone marrow-derived dendritic cells (BMDCs) activated by D. farinae had delayed intracellular processing of allergen and impaired allergen-dependent maturation, a pattern recapitulated by the native lung DCs of D. farinae-challenged mice. Adoptively transferred D. farinae-loaded Pla2g5-null BMDCs were less able than D. farinae-loaded WT BMDCs to induce pulmonary inflammation and Th2 polarization in WT mice. However, Pla2g5-null recipients transferred with WT or Pla2g5-null D. farinae-loaded BMDCs exhibited significantly reduced local inflammatory responses to D. farinae, even though the transfer of WT BMDCs still induced an intact Th2 cytokine response in regional lymph nodes. Thus, the expression of group V sPLA2 in APCs regulates Ag processing and maturation of DCs and contributes to pulmonary inflammation and immune response against D. farinae. Furthermore, an additional yet to be identified resident cell type is essential for the development of pulmonary inflammation, likely a cell in which group V sPLA2 is upregulated by D. farinae, and whose function is also regulated by group V sPLA2.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....609c21e41f9c89ed573eb328de70db60