Back to Search Start Over

Metabolic Signatures of Exercise in Human Plasma

Authors :
Clary B. Clish
Marc J. Semigran
Frederick P. Roth
Gregory D. Lewis
Marc S. Sabatine
Robert E. Gerszten
Malissa J. Wood
Maryann E. Martinovic
Eugene P. Rhee
Elaine Yang
Glenn C. Rowe
Aarti Asnani
Elizabeth L. McCabe
Ramachandran S. Vasan
Laurie A. Farrell
Susan Cheng
Xu Shi
Amanda Souza
Steven A. Carr
Rahul C. Deo
Zoltan Arany
Thomas J. Wang
David M. Systrom
Source :
Science Translational Medicine. 2
Publication Year :
2010
Publisher :
American Association for the Advancement of Science (AAAS), 2010.

Abstract

Exercise provides numerous salutary effects, but our understanding of how these occur is limited. To gain a clearer picture of exercise-induced metabolic responses, we have developed comprehensive plasma metabolite signatures by using mass spectrometry to measure >200 metabolites before and after exercise. We identified plasma indicators of glycogenolysis (glucose-6-phosphate), tricarboxylic acid cycle span 2 expansion (succinate, malate, and fumarate), and lipolysis (glycerol), as well as modulators of insulin sensitivity (niacinamide) and fatty acid oxidation (pantothenic acid). Metabolites that were highly correlated with fitness parameters were found in subjects undergoing acute exercise testing and marathon running and in 302 subjects from a longitudinal cohort study. Exercise-induced increases in glycerol were strongly related to fitness levels in normal individuals and were attenuated in subjects with myocardial ischemia. A combination of metabolites that increased in plasma in response to exercise (glycerol, niacinamide, glucose-6-phosphate, pantothenate, and succinate) up-regulated the expression of nur77, a transcriptional regulator of glucose utilization and lipid metabolism genes in skeletal muscle in vitro. Plasma metabolic profiles obtained during exercise provide signatures of exercise performance and cardiovascular disease susceptibility, in addition to highlighting molecular pathways that may modulate the salutary effects of exercise.

Details

ISSN :
19466242 and 19466234
Volume :
2
Database :
OpenAIRE
Journal :
Science Translational Medicine
Accession number :
edsair.doi.dedup.....609a9a2fbc300e5f4dd0db145cd406fa