Back to Search Start Over

Enumeration, measurement, and identification of net zooplankton samples using the ZOOSCAN digital imaging system

Authors :
Gabriel Gorsky
Philippe Grosjean
Caroline Warembourg
Marc Picheral
Laboratoire d'océanographie de Villefranche (LOV)
Observatoire océanologique de Villefranche-sur-mer (OOVM)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Source :
ICES JOURNAL OF MARINE SCIENCE, ICES JOURNAL OF MARINE SCIENCE, 2004, 61 (4), pp.518-525. ⟨10.1016/j.icesjms.2004.03.012⟩
Publication Year :
2004
Publisher :
HAL CCSD, 2004.

Abstract

Grosjean, P., Picheral, M., Warembourg, C., and Gorsky, G. 2004. Enumeration,measurement, and identification of net zooplankton samples using the ZOOSCAN digitalimaging system. e ICES Journal of Marine Science, 61: 518e525.Identifying and counting zooplankton are labour-intensive and time-consuming processesthat are still performed manually. However, a new system, known as ZOOSCAN, has beendesigned for counting zooplankton net samples. We describe image-processing and theresults of (semi)-automatic identification of taxa with various machine-learning methods.Each scan contains between 1500 and 2000 individuals !0.5 mm. We used two trainingsets of about 1000 objects each divided into 8 (simplified) and 29 groups (detailed),respectively. The new discriminant vector forest algorithm, which is one of the mostefficient methods, discriminates between the organisms in the detailed training set with anaccuracy of 75% at a speed of 2000 items per second. A supplementary algorithm tagsobjects that the method classified with low accuracy (suspect items), such that they could bechecked by taxonomists. This complementary and interactive semi-automatic processcombines both computer speed and the ability to detect variations in proportions and greylevels with the human skills to discriminate animals on the basis of small details, such aspresence/absence or number of appendages. After this checking process, total accuracyincreases to between 80% and 85%. We discuss the potential of the system as a standard foridentification, enumeration, and size frequency distribution of net-collected zooplankton.

Details

Language :
English
Database :
OpenAIRE
Journal :
ICES JOURNAL OF MARINE SCIENCE, ICES JOURNAL OF MARINE SCIENCE, 2004, 61 (4), pp.518-525. ⟨10.1016/j.icesjms.2004.03.012⟩
Accession number :
edsair.doi.dedup.....6093f8cf045de548ce0fa5e326df707c
Full Text :
https://doi.org/10.1016/j.icesjms.2004.03.012⟩