Back to Search
Start Over
Adsorption of Cs(I) and Sr(II) on Bentonites with Different Compositions at Different pH
- Source :
- Minerals; Volume 12; Issue 7; Pages: 862
- Publication Year :
- 2022
- Publisher :
- MDPI AG, 2022.
-
Abstract
- This paper deals with adsorption regularities and mechanisms of nonradioactive Cs(I) and Sr(II) analogs on bentonites of different chemical and mineral composition from solutions of Cs and Sr nitrates with pH 3, 7, and 10 units at constant ionic strength. The bentonites were taken from the deposits Taganskoe (T), Dash-Salakhlinskoe (DS), Zyryanskoe (Z), and 10th Khutor (10H). The pH of bentonite aqueous suspensions, T and DS, exceeded 9 units. A less alkaline reaction was observed in bentonite suspensions Z and T with pH 8.94 and 7.70, respectively. Bentonites T and DS contained significant amounts of nonsilicate iron compounds, 1.0 and 0.5%, respectively. The recovery rate of the studied clays from aqueous solutions of Cs(I) and Sr(II) ions in concentrations from 0.25 to 5 mmol/L varied from 50% to 90% and decreased in the following order: “Ta-ganskoe” > “Dash-Salakhlinskoe” > “Zyryanskoe” > “10th Khutor” in the studied pH range. The main mechanism of Cs(I) and Sr(II) sorption in the studied pH range was cation fixation in the form of outer-sphere complexes on planar surfaces resulting from ion exchange. Increasing pH (pH > 6) enhanced pH-dependent positions, which allowed Cs(I) and especially Sr(II) ions to fix on them more firmly as inner-sphere complexes. At pH 9–10, Sr(II) could precipitate in the form of carbonates. The sorption of Cs(I) + and Sr(II) was accompanied by competitive interactions with proton at pH < 6 and Na+, Ca2+, Mg2+, and K+ cations at higher pH values. This competition was more apparent at concentrations of Cs(I)and Sr(II) in initial solutions < 0.5 mmol/L. The ability of bentonite T to sorb Cs(I) and Sr(II) in large amounts compared to the other bentonites was determined by high CEC values and charge of smectite T.
Details
- ISSN :
- 2075163X
- Volume :
- 12
- Database :
- OpenAIRE
- Journal :
- Minerals
- Accession number :
- edsair.doi.dedup.....6081da62be0bb05fdd7a55fb3bf536d4
- Full Text :
- https://doi.org/10.3390/min12070862