Back to Search Start Over

Ginsenoside Rb1 Prevents MPP+-Induced Apoptosis in PC12 Cells by Stimulating Estrogen Receptors with Consequent Activation of ERK1/2, Akt and Inhibition of SAPK/JNK, p38 MAPK

Authors :
Ryo Hashimoto
Jing-Jing Yu
Tetsuro Okabe
Yasuyoshi Ouchi
Hideki Koizumi
Source :
Evidence-based Complementary and Alternative Medicine : eCAM, Evidence-Based Complementary and Alternative Medicine, Vol 2012 (2012)
Publication Year :
2012
Publisher :
Hindawi Publishing Corporation, 2012.

Abstract

Ginsenoside Rb1 shows neuroprotective effects in various neurons, including dopaminergic cells. However, the precise mechanisms of action are uncertain. In this paper, we examine whether Rb1 has a neuroprotective effect on MPP+-induced apoptosis and attempt to clarify the signaling pathway in PC12 cells. Apoptosis of PC12 cells was determined by DNA fragmentation assay, the activation of caspase-3, or by the inactivation of Bcl-xL. Rb1 inhibited MPP+-induced caspase-3 activation and DNA fragmentation and activated Bcl-xL in MPP+-treated PC12 cells. These antiapoptotic effect was abrogated in PC12 cells transfected with estrogen receptor siRNA. Levels of DNA fragmentation were increased by wortmannin or PD 98059, while they were decreased by SB 203580 or SP 600125 in MPP+-treated PC12 cells. Rb1 increased phosphorylation levels of ERK1/2 or Akt in MPP+-treated PC12 cells, while it reduced phosphorylated p38 or SAPK/JNK. The increased phosphorylation of ERK/1/2 or Akt by Rb1 was abrogated by estrogen receptor siRNA. Rb1-induced inhibition of SAPK/JNK or p38 phosphorylation was also abolished by estrogen receptor siRNA. These results suggest that ginsenoside Rb1 protects PC12 cells from caspase-3-dependent apoptosis through stimulation of estrogen receptor with consequent activation of ERK1/2 and Akt and inhibition of SAPK/JNK and p38.

Details

Language :
English
ISSN :
17414288 and 1741427X
Volume :
2012
Database :
OpenAIRE
Journal :
Evidence-based Complementary and Alternative Medicine : eCAM
Accession number :
edsair.doi.dedup.....6071af5c620b16451fe1013cdb70ba05