Back to Search Start Over

Effects of benzodiazepines receptor agonists on the hypothalamic–pituitary–adrenocortical axis

Authors :
Naheed R. Mirza
Andreas Søderman
Alexander Kiss
Jens D. Mikkelsen
Source :
European Journal of Pharmacology. 519:223-230
Publication Year :
2005
Publisher :
Elsevier BV, 2005.

Abstract

Previous studies have demonstrated that classical benzodiazepines decrease hypothalamic-pituitary-adrenocortical cortex (HPA) axis activity. Paradoxically, high doses of benzodiazepines also stimulate basal circulating corticosterone levels in some conditions. Because benzodiazepine agonists display little selectivity to any of the alpha subtypes of the gamma-amino butyric acid (GABA)(A) receptor to which they bind, we propose that the unequivocal results are due to an alpha subtype-dependent modulation of the hypothalamic-pituitary-adrenocortical cortex axis output. To test this, basal hormonal output and induction of Fos in the hypothalamic paraventricular nucleus were measured after administration of various benzodiazepine ligands in mice. Zolpidem, a selective alpha1 subtype agonist, produced a very strong increase in plasma adrenocorticotropic hormone and corticosterone whereas the inverse agonist FG7142 induced a small rise in plasma corticosterone. More surprisingly, the non-selective full agonists diazepam and zopiclone induced a lower increase in circulating corticosterone than after zolpidem. In contrast, the alpha(2,3,5)-selective benzodiazepine agonist and alpha1 antagonist L-838,417 had no effect on corticosterone levels. Strong induction of Fos in the paraventricular nucleus was found in response to zolpidem, diazepam, and zopiclone, but not after L-838,417. Finally, pre-administration of L-838,417 prior to zolpidem strongly inhibited the effect of zolpidem on corticosterone. Likewise, the non-selective agonists diazepam and zopiclone at a dose that alone had no effect on corticosterone also inhibited the effect of zolpidem. Taken together, these results suggest that benzodiazepine ligands modulate the hypothalamic-pituitary-adrenocortical cortex axis through partly opposite mechanisms; and that the net effect is dependent on the composition of the GABA(A) receptor subunits to which they bind.

Details

ISSN :
00142999
Volume :
519
Database :
OpenAIRE
Journal :
European Journal of Pharmacology
Accession number :
edsair.doi.dedup.....600650aae78bdae8a87a60b39dcec852
Full Text :
https://doi.org/10.1016/j.ejphar.2005.06.049