Back to Search
Start Over
Wnt7a promotes the osteogenic differentiation of human mesenchymal stem cells
- Source :
- International Journal of Molecular Medicine
- Publication Year :
- 2020
-
Abstract
- Mesenchymal stem cells (MSCs) have the ability of differentiating into osteoblasts. Elucidating the molecular mechanisms of MSC differentiation into osteoblasts may provide novel therapeutic strategies for bone‑related diseases. Increasing evidence has confirmed that Wnt signaling plays the key role in osteoblast differentiation; however, the role of individual Wnt proteins in osteogenesis needs to be investigated. The present study thus aimed to explore the role of Wnt7a in bone formation. For this purpose, human bone‑derived MSCs were identified by flow cytometry and the cell differentiation potential, including osteogenic and adipogenic differentiation was examined. In order to explore the role of Wnt7a in MSC osteogenic differentiation, Wnt7a expression was measured at the mRNA and protein level following treatment with the osteogenic inducer, bone morphogenetic protein (BMP)4/7, and following the induction of osteogenic or adipogenic differentiation. The ectopic expression of Wnt7a in MSCs was confirmed and its influence on MSC osteogenic differentiation was detected using osteocyte markers and by Alizarin Red S staining. Mechanistically, the influence of Wnt7a on Runt‑related transcription factor 2 (RUNX2) expression was examined at the mRNA and protein level. The regulatory effects of Wnt7a on RUNX2 promoter activities were examined by promoter reporter assay, and by examining the binding of TCF1, a downstream target of Wnt, to the RUNX2 promoter by ChIP assay. The results revealed that the knockdown of Wnt7a in MSCs decreased the expression of osteocyte markers and inhibited osteogenic differentiation. In accordance, the overexpression of Wnt7a in MSCs increased the expression of osteocyte markers and promoted osteogenic differentiation. Mechanistically, the knockdown of Wnt7a in MSCs reduced RUNX2 expression and the overexpression of Wnt7a in MSCs promoted RUNX2 expression. Furthermore, it was confirmed that Wnt7a regulated RUNX2 promoter activities by promoter report assay, and by examining the binding of TCF1 to the RUNX2 promoter by ChIP assay. On the whole, the present study demonstrates that Wnt7a plays a key role in MSC differentiation into osteoblasts and the findings presented herein may provide a promising therapy target for bone‑related diseases.
- Subjects :
- Cellular differentiation
RUNX2
Gene Expression
Bone morphogenetic protein
Osteogenesis
Wnt7a
Genetics
medicine
Humans
RNA, Messenger
Cells, Cultured
mesenchymal stem cell
Chemistry
Mesenchymal stem cell
Osteoblast
Cell Differentiation
Mesenchymal Stem Cells
General Medicine
Articles
Cell biology
Wnt Proteins
medicine.anatomical_structure
Adipogenesis
Osteocyte
Ectopic expression
Subjects
Details
- ISSN :
- 1791244X
- Volume :
- 47
- Issue :
- 6
- Database :
- OpenAIRE
- Journal :
- International journal of molecular medicine
- Accession number :
- edsair.doi.dedup.....6003e35ab642be35dd81d6137757fbf9