Back to Search Start Over

Direct molecular dynamics simulation of liquid-solid phase equilibria for two-component plasmas

Authors :
Andrew Cumming
J. Hughto
A. S. Schneider
Don Berry
Charles Horowitz
Zach Medin
Source :
Physical review. E, Statistical, nonlinear, and soft matter physics. 85(6 Pt 2)
Publication Year :
2011

Abstract

We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using two-phase molecular dynamics simulations. We identify liquid, solid, and interface regions using a bond angle metric. To study finite-size effects, we perform 27,648- and 55,296-ion simulations. To help monitor nonequilibrium effects, we calculate diffusion constants D(i). For the carbon-oxygen system we find that D(O) for oxygen ions in the solid is much smaller than D(C) for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our carbon-oxygen phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite-size and nonequilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known. The oxygen-selenium system is a simple two-component model for more complex rapid proton capture nucleosynthesis ash compositions for an accreting neutron star. Diffusion of oxygen, in a predominantly selenium crystal, is remarkably fast, comparable to diffusion in the liquid phase. We find a somewhat lower melting temperature for the oxygen-selenium system than that predicted by Medin and Cumming. This is probably because of electron screening effects.

Details

ISSN :
15502376
Volume :
85
Issue :
6 Pt 2
Database :
OpenAIRE
Journal :
Physical review. E, Statistical, nonlinear, and soft matter physics
Accession number :
edsair.doi.dedup.....5f8c497501d01254c255195e4e850f1d