Back to Search Start Over

Multilevel modelling and malaria: a new method for an old disease

Authors :
Jean-François Viel
B. Sellin
Frédéric Mauny
Pascal Handschumacher
Laboratoire Chrono-environnement - CNRS - UBFC (UMR 6249) (LCE)
Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC)
Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)
Laboratoire Chrono-environnement ( LCE )
Université Bourgogne Franche-Comté ( UBFC ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Franche-Comté ( UFC )
Source :
International Journal of Epidemiology, International Journal of Epidemiology, Oxford University Press (OUP), 2004, 33 (6), pp.1337-44. ⟨10.1093/ije/dyh274⟩, International Journal of Epidemiology, Oxford University Press (OUP), 2004, 33 (6), pp.1337-44. 〈10.1093/ije/dyh274〉
Publication Year :
2004
Publisher :
HAL CCSD, 2004.

Abstract

International audience; BACKGROUND: Malaria is influenced by a web of individual and ecological factors, i.e. factors relating to people and relating to environment. For a long time analysing these factors concurrently has raised statistical problems. Multilevel modelling provides a new attractive solution, which is still uncommon in tropical medicine. METHODS: Using an actual data set of 3864 individuals from 38 villages of the Highland Madagascar, a two-level modelling process is presented. Individual malaria parasitaemia is modelled step by step according to age (individual factor), altitude, and DDT indoor house-spraying status (village factors). RESULTS: The hierarchical organization of a data set in levels, fixed and random effects, and cross-level interactions are considered. Accurate estimations of standard errors, impact of unknown or unmeasured variables quantified and accounted for through random effects, are the highlighted advantages of multilevel modelling. CONCLUSION: While not denying the importance of understanding an aetiological chain, the authors recommend an increased use of multilevel modelling, mainly to identify accurately ecological targets for public health policy.

Details

Language :
English
ISSN :
03005771 and 14643685
Database :
OpenAIRE
Journal :
International Journal of Epidemiology, International Journal of Epidemiology, Oxford University Press (OUP), 2004, 33 (6), pp.1337-44. ⟨10.1093/ije/dyh274⟩, International Journal of Epidemiology, Oxford University Press (OUP), 2004, 33 (6), pp.1337-44. 〈10.1093/ije/dyh274〉
Accession number :
edsair.doi.dedup.....5f8b72f33bfdf6f819b7191b4a218b3c
Full Text :
https://doi.org/10.1093/ije/dyh274⟩