Back to Search Start Over

Correlative STED and Atomic Force Microscopy on Live Astrocytes Reveals Plasticity of Cytoskeletal Structure and Membrane Physical Properties during Polarized Migration

Authors :
Curry, Nathan
Ghézali, Grégory
Kaminski Schierle, Gabriele S.
Rouach, Nathalie
Kaminski, Clemens F.
Kaminski, Clemens [0000-0002-5194-0962]
Apollo - University of Cambridge Repository
University of Cambridge [UK] (CAM)
Centre interdisciplinaire de recherche en biologie (CIRB)
Labex MemoLife
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Université Paris sciences et lettres (PSL)-Collège de France (CdF (institution))-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Collège de France (CdF (institution))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Frontiers in Cellular Neuroscience, Frontiers in Cellular Neuroscience, Frontiers, 2017, 11, ⟨10.3389/fncel.2017.00104⟩
Publication Year :
2016

Abstract

The plasticity of the cytoskeleton architecture and membrane properties is important for the establishment of cell polarity, adhesion and migration. Here, we present a method which combines stimulated emission depletion (STED) super-resolution imaging and atomic force microscopy (AFM) to correlate cytoskeletal structural information with membrane physical properties in live astrocytes. Using STED compatible dyes for live cell imaging of the cytoskeleton, and simultaneously mapping the cell surface topology with AFM, we obtain unprecedented detail of highly organized networks of actin and microtubules in astrocytes. Combining mechanical data from AFM with optical imaging of actin and tubulin further reveals links between cytoskeleton organization and membrane properties. Using this methodology we illustrate that scratch-induced migration induces cytoskeleton remodeling. The latter is caused by a polarization of actin and microtubule elements within astroglial cell processes, which correlates strongly with changes in cell stiffness. The method opens new avenues for the dynamic probing of the membrane structural and functional plasticity of living brain cells. It is a powerful tool for providing new insights into mechanisms of cell structural remodeling during physiological or pathological processes, such as brain development or tumorigenesis.

Details

ISSN :
16625102
Volume :
11
Database :
OpenAIRE
Journal :
Frontiers in cellular neuroscience
Accession number :
edsair.doi.dedup.....5f8aa14ffe8a4ee46e4b6fa7cb591f43