Back to Search
Start Over
HIV-1 Accessory Protein Vpr Interacts with REAF/RPRD2 To Mitigate Its Antiviral Activity
- Source :
- J Virol
- Publication Year :
- 2019
-
Abstract
- The Human Immunodeficiency Virus type 1 (HIV-1) accessory protein Vpr enhances viral replication in both macrophages and in cycling T cells to a lesser extent. Virion packaged Vpr is released in target cells shortly after entry, suggesting its requirement in the early phase of infection. Previously, we described REAF (RNA-associated Early-stage Antiviral Factor, RPRD2), a constitutively expressed protein that potently restricts HIV replication at or during reverse transcription. Here, we show that a virus without intactvpris more highly restricted by REAF and, using delivery by VLPs, that Vpr alone is sufficient for REAF degradation in primary macrophages. REAF is more highly expressed in macrophages than in cycling T cells and we detect, by co-immunoprecipitation assay, an interaction between Vpr protein and endogenous REAF. Vpr acts very quickly during the early phase of replication and induces the degradation of REAF within 30 minutes of viral entry. Using Vpr F34I and Q65R viral mutants, we show that nuclear localisation and interaction with cullin4A-DBB1 (DCAF1) E3 ubiquitin ligase is required for REAF degradation by Vpr. In response to infection, cells upregulate REAF levels. This response is curtailed in the presence of Vpr. These findings support the hypothesis that Vpr induces the degradation of a factor, REAF, which impedes HIV infection in macrophages.ImportanceFor at least 30 years, it has been known that HIV-1 Vpr, a protein carried in the virion, is important for efficient infection of primary macrophages. Vpr is also a determinant of the pathogenic effects of HIV-1in vivo. A number of cellular proteins that interact with Vpr have been identified. So far, it has not been possible to associate these proteins with altered viral replication in macrophages, or to explain why Vpr is carried in the virus particle. Here we show that Vpr mitigates the antiviral effects of REAF, a protein highly expressed in primary macrophages and one which inhibits virus replication early during reverse transcription. REAF is degraded by Vpr within 30 minutes of virus entry, in a manner dependent on the nuclear localization of Vpr and its interaction with the cell’s protein degradation machinery.
- Subjects :
- Immunoprecipitation
viruses
Ubiquitin-Protein Ligases
Immunology
Primary Cell Culture
HIV Infections
Protein degradation
Biology
Virus Replication
Microbiology
Antiviral Agents
Virus
03 medical and health sciences
0302 clinical medicine
Downregulation and upregulation
Viral entry
Virology
Humans
030304 developmental biology
0303 health sciences
Gene Products, vpr
Macrophages
Virion
virus diseases
vpr Gene Products, Human Immunodeficiency Virus
biochemical phenomena, metabolism, and nutrition
Reverse transcriptase
Cell biology
Ubiquitin ligase
Virus-Cell Interactions
DNA-Binding Proteins
HEK293 Cells
Viral replication
Insect Science
Host-Pathogen Interactions
biology.protein
HIV-1
Carrier Proteins
030217 neurology & neurosurgery
Nuclear localization sequence
HeLa Cells
Subjects
Details
- ISSN :
- 10985514
- Volume :
- 94
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- Journal of virology
- Accession number :
- edsair.doi.dedup.....5f7ad746d9606d13183a4ca3876ade90