Back to Search Start Over

Domains Without Dense Steklov Nodal Sets

Authors :
Jeffrey Galkowski
Oscar P. Bruno
Source :
Journal of Fourier Analysis and Applications. 26
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

This article concerns the asymptotic geometric character of the nodal set of the eigenfunctions of the Steklov eigenvalue problem $$\begin{aligned} -\Delta \phi _{\sigma _j}=0,\quad \hbox { on }\,\,\Omega ,\quad \partial _\nu \phi _{\sigma _j}=\sigma _j \phi _{\sigma _j}\quad \hbox { on }\,\,\partial \Omega \end{aligned}$$-Δϕσj=0,onΩ,∂νϕσj=σjϕσjon∂Ωin two-dimensional domains $$\Omega $$Ω. In particular, this paper presents a dense family $$\mathcal {A}$$A of simply-connected two-dimensional domains with analytic boundaries such that, for each $$\Omega \in \mathcal {A}$$Ω∈A, the nodal set of the eigenfunction $$\phi _{\sigma _j}$$ϕσj “is not dense at scale $$\sigma _j^{-1}$$σj-1”. This result addresses a question put forth under “Open Problem 10” in Girouard and Polterovich (J Spectr Theory 7(2):321–359, 2017). In fact, the results in the present paper establish that, for domains $$\Omega \in \mathcal {A}$$Ω∈A, the nodal sets of the eigenfunctions $$\phi _{\sigma _j}$$ϕσj associated with the eigenvalue $$\sigma _j$$σj have starkly different character than anticipated: they are not dense at any shrinking scale. More precisely, for each $$\Omega \in \mathcal {A}$$Ω∈A there is a value $$r_1>0$$r1>0 such that for each j there is $$x_j\in \Omega $$xj∈Ω such that $$\phi _{\sigma _j}$$ϕσj does not vanish on the ball of radius $$r_1$$r1 around $$x_j$$xj.

Details

ISSN :
15315851 and 10695869
Volume :
26
Database :
OpenAIRE
Journal :
Journal of Fourier Analysis and Applications
Accession number :
edsair.doi.dedup.....5f7a318469c06e9bf1c6f8b9c7e774a0