Back to Search
Start Over
LiteGEM: Lite Geometry Enhanced Molecular Representation Learning for Quantum Property Prediction
- Publication Year :
- 2021
- Publisher :
- arXiv, 2021.
-
Abstract
- In this report, we (SuperHelix team) present our solution to KDD Cup 2021-PCQM4M-LSC, a large-scale quantum chemistry dataset on predicting HOMO-LUMO gap of molecules. Our solution, Lite Geometry Enhanced Molecular representation learning (LiteGEM) achieves a mean absolute error (MAE) of 0.1204 on the test set with the help of deep graph neural networks and various self-supervised learning tasks. The code of the framework can be found in https://github.com/PaddlePaddle/PaddleHelix/tree/dev/competition/kddcup2021-PCQM4M-LSC/.
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....5f54fabf32e16c0d0e606f81511fd5be
- Full Text :
- https://doi.org/10.48550/arxiv.2106.14494