Back to Search
Start Over
Quasiconformal extension for harmonic mappings on finitely connected domains
- Source :
- Comptes Rendus. Mathématique. 359:905-909
- Publication Year :
- 2021
- Publisher :
- Cellule MathDoc/CEDRAM, 2021.
-
Abstract
- We prove that a harmonic quasiconformal mapping defined on a finitely connected domain in the plane, all of whose boundary components are either points or quasicircles, admits a quasiconformal extension to the whole plane if its Schwarzian derivative is small. We also make the observation that a univalence criterion for harmonic mappings holds on uniform domains.<br />Comment: 6 pages, 1 figure; slightly extended introduction in version 2
- Subjects :
- Quasiconformal mapping
Pure mathematics
Mathematics::Dynamical Systems
Mathematics - Complex Variables
Mathematics::Complex Variables
Plane (geometry)
General Mathematics
Boundary (topology)
Harmonic (mathematics)
Extension (predicate logic)
Domain (mathematical analysis)
FOS: Mathematics
30C55, 30C62, 31A05
Complex Variables (math.CV)
Schwarzian derivative
Mathematics
Subjects
Details
- ISSN :
- 17783569
- Volume :
- 359
- Database :
- OpenAIRE
- Journal :
- Comptes Rendus. Mathématique
- Accession number :
- edsair.doi.dedup.....5f52575764555509fdac1fbe91399d10