Back to Search Start Over

Hydrodynamic limit equation for a lozenge tiling Glauber dynamics

Hydrodynamic limit equation for a lozenge tiling Glauber dynamics

Authors :
Benoît Laslier
Fabio Lucio Toninelli
University of Cambridge [UK] (CAM)
Statistical Laboratory [Cambridge]
Department of Pure Mathematics and Mathematical Statistics (DPMMS)
Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS)
University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM)-Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS)
University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM)
Institut Camille Jordan [Villeurbanne] (ICJ)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Probabilités, statistique, physique mathématique (PSPM)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
Source :
Annales Henri Poincaré, Annales Henri Poincaré, Springer Verlag, 2017, 18 (6), pp.2007-2043. ⟨10.1007/s00023-016-0548-8⟩
Publication Year :
2016

Abstract

We study a reversible continuous-time Markov dynamics on lozenge tilings of the plane, introduced by Luby et al. Single updates consist in concatenations of $n$ elementary lozenge rotations at adjacent vertices. The dynamics can also be seen as a reversible stochastic interface evolution. When the update rate is chosen proportional to $1/n$, the dynamics is known to enjoy especially nice features: a certain Hamming distance between configurations contracts with time on average and the relaxation time of the Markov chain is diffusive, growing like the square of the diameter of the system. Here, we present another remarkable feature of this dynamics, namely we derive, in the diffusive time scale, a fully explicit hydrodynamic limit equation for the height function (in the form of a non-linear parabolic PDE). While this equation cannot be written as a gradient flow w.r.t. a surface energy functional, it has nice analytic properties, for instance it contracts the $\mathbb L^2$ distance between solutions. The mobility coefficient $\mu$ in the equation has non-trivial but explicit dependence on the interface slope and, interestingly, is directly related to the system's surface free energy. The derivation of the hydrodynamic limit is not fully rigorous, in that it relies on an unproven assumption of local equilibrium.<br />Comment: 31 pages, 8 figures. v2: typos corrected, some proofs clarified. To appear on Annales Henri Poincare

Details

Language :
English
ISSN :
14240637 and 14240661
Database :
OpenAIRE
Journal :
Annales Henri Poincaré, Annales Henri Poincaré, Springer Verlag, 2017, 18 (6), pp.2007-2043. ⟨10.1007/s00023-016-0548-8⟩
Accession number :
edsair.doi.dedup.....5ef78bf9446a5a0ca7adb1047e2c5935
Full Text :
https://doi.org/10.1007/s00023-016-0548-8⟩