Back to Search
Start Over
Selective Inbreeding: Genetic Crosses Drive Apparent Adaptive Mutation in the Cairns-Foster System of Escherichia coli
- Source :
- Genetics, vol 214, iss 2
- Publication Year :
- 2020
- Publisher :
- Oxford University Press (OUP), 2020.
-
Abstract
- In the Cairns-Foster adaptive mutation system, lac mutant cells are plated on lactose medium where 50 revertant colonies accumulate over 5 days above a non-growing lawn. A new model attributes this behavior to selective... The Escherichia coli system of Cairns and Foster employs a lac frameshift mutation that reverts rarely (10−9/cell/division) during unrestricted growth. However, when 108 cells are plated on lactose medium, the nongrowing lawn produces ∼50 Lac+ revertant colonies that accumulate linearly with time over 5 days. Revertants carry very few associated mutations. This behavior has been attributed to an evolved mechanism (“adaptive mutation” or “stress-induced mutagenesis”) that responds to starvation by preferentially creating mutations that improve growth. We describe an alternative model, “selective inbreeding,” in which natural selection acts during intercellular transfer of the plasmid that carries the mutant lac allele and the dinB gene for an error-prone polymerase. Revertant genome sequences show that the plasmid is more intensely mutagenized than the chromosome. Revertants vary widely in their number of plasmid and chromosomal mutations. Plasmid mutations are distributed evenly, but chromosomal mutations are focused near the replication origin. Rare, heavily mutagenized, revertants have acquired a plasmid tra mutation that eliminates conjugation ability. These findings support the new model, in which revertants are initiated by rare pre-existing cells (105) with many copies of the F’lac plasmid. These cells divide under selection, producing daughters that mate. Recombination between donor and recipient plasmids initiates rolling-circle plasmid over-replication, causing a mutagenic elevation of DinB level. A lac+ reversion event starts chromosome replication and mutagenesis by accumulated DinB. After reversion, plasmid transfer moves the revertant lac+ allele into an unmutagenized cell, and away from associated mutations. Thus, natural selection explains why mutagenesis appears stress-induced and directed.
- Subjects :
- DNA Replication
recombination-dependent replication
DNA repair
Mutant
selection
Mutagenesis (molecular biology technique)
Lactose
Crosses
Biology
medicine.disease_cause
break-induced replication
Frameshift mutation
03 medical and health sciences
adaptive mutation
0302 clinical medicine
Plasmid
Genetic
Adaptive mutation
Escherichia coli
Genetics
medicine
Adaptation
Frameshift Mutation
Gene
Alleles
plasmid transfer
030304 developmental biology
0303 health sciences
Mutation
Escherichia coli Proteins
copy number variation
Biological
selective gene amplification
DinB
rolling-circle replication
Lac Operon
Mutagenesis
bacterial mating
030217 neurology & neurosurgery
Plasmids
Selective Breeding
Biotechnology
Developmental Biology
Subjects
Details
- ISSN :
- 19432631
- Volume :
- 214
- Database :
- OpenAIRE
- Journal :
- Genetics
- Accession number :
- edsair.doi.dedup.....5ef290102bcb0888648c43959edfc402