Back to Search Start Over

Bivariate generalization of the Gauss hypergeometric distribution

Authors :
Danilo Bedoya-Valencia
Saralees Nadarajah
Daya K. Nagar
Source :
Repositorio UdeA, Universidad de Antioquia, instacron:Universidad de Antioquia
Publication Year :
2015
Publisher :
Hikari, Ltd., 2015.

Abstract

The bivariate generalization of the Gauss hypergeometric distribution is defined by the probability density function proportional to x α1−1y α2−1 (1 − x − y) β−1 (1 + ξ1x + ξ2y) −γ , x > 0, y > 0, x + y < 1, where αi > 0, i = 1, 2, β > 0, −∞ < γ < ∞ and ξi > −1, i = 1, 2 are constants. In this article, we study several of its properties such as marginal and conditional distributions, joint moments and the coefficient of correlation. We compute the exact forms of R´enyi and Shannon entropies for this distribution. We also derive the distributions of X+Y , X/(X +Y ), V = X/Y and XY where X and Y follow a bivariate Gauss hypergeometric distribution. COL0000532

Details

ISSN :
13147552
Volume :
9
Database :
OpenAIRE
Journal :
Applied Mathematical Sciences
Accession number :
edsair.doi.dedup.....5ef1eedd95f8ae0f6e54fa963dbaf0f8
Full Text :
https://doi.org/10.12988/ams.2015.52111