Back to Search
Start Over
Bivariate generalization of the Gauss hypergeometric distribution
- Source :
- Repositorio UdeA, Universidad de Antioquia, instacron:Universidad de Antioquia
- Publication Year :
- 2015
- Publisher :
- Hikari, Ltd., 2015.
-
Abstract
- The bivariate generalization of the Gauss hypergeometric distribution is defined by the probability density function proportional to x α1−1y α2−1 (1 − x − y) β−1 (1 + ξ1x + ξ2y) −γ , x > 0, y > 0, x + y < 1, where αi > 0, i = 1, 2, β > 0, −∞ < γ < ∞ and ξi > −1, i = 1, 2 are constants. In this article, we study several of its properties such as marginal and conditional distributions, joint moments and the coefficient of correlation. We compute the exact forms of R´enyi and Shannon entropies for this distribution. We also derive the distributions of X+Y , X/(X +Y ), V = X/Y and XY where X and Y follow a bivariate Gauss hypergeometric distribution. COL0000532
- Subjects :
- Multivariate statistics
Distribution (number theory)
Generalization
Funciones
Applied Mathematics
Gauss
Hypergeometric functions
Hypergeometric distribution
Normal-Wishart distribution
Combinatorics
Functions
Prior probability
Funciones hipergeométricas
62H15
62E15
Connection (algebraic framework)
Mathematics
Subjects
Details
- ISSN :
- 13147552
- Volume :
- 9
- Database :
- OpenAIRE
- Journal :
- Applied Mathematical Sciences
- Accession number :
- edsair.doi.dedup.....5ef1eedd95f8ae0f6e54fa963dbaf0f8
- Full Text :
- https://doi.org/10.12988/ams.2015.52111