Back to Search
Start Over
Attenuating persistent sodium current-induced atrial myopathy and fibrillation by preventing mitochondrial oxidative stress
- Source :
- JCI Insight
- Publication Year :
- 2021
-
Abstract
- Mechanistically driven therapies for atrial fibrillation (AF), the most common cardiac arrhythmia, are urgently needed, the development of which require improved understanding of the cellular signaling pathways that facilitate the structural and electrophysiological remodeling that occurs in the atria. Similar to humans, increased persistent Na+ current leads to the development of an atrial myopathy and spontaneous and long-lasting episodes of AF in mice. How increased persistent Na+ current causes both structural and electrophysiological remodeling in the atria is unknown. We cross-bred mice expressing human F1759A-NaV1.5 channels with mice expressing human mitochondrial catalase (mCAT). Increased expression of mitochondrial catalase attenuated mitochondrial and cellular reactive oxygen species (ROS), and the structural remodeling that was induced by persistent F1759A-Na+ current. Despite the heterogeneously prolonged atrial action potential, which was unaffected by the reduction in ROS, the incidence of both spontaneous AF and pacing-induced after-depolarizations and AF was substantially reduced. Expression of mitochondrial catalase markedly reduced persistent Na+ current induced ryanodine receptor oxidation and dysfunction. In summary, increased persistent Na+ current in atrial cardiomyocytes, which is observed in patients with AF, induces atrial enlargement, fibrosis, mitochondrial dysmorphology, early after-depolarizations and AF, all of which can be attenuated by resolving mitochondrial oxidative stress.
- Subjects :
- Male
Atrial action potential
Atrial enlargement
Cardiology
Sodium channels
Cardiomegaly
Mice, Transgenic
Pharmacology
Arrhythmias
medicine.disease_cause
Mitochondria, Heart
NAV1.5 Voltage-Gated Sodium Channel
Mice
Atrial Fibrillation
medicine
Animals
Humans
Myocytes, Cardiac
Heart Atria
Myopathy
Crosses, Genetic
Fibrillation
chemistry.chemical_classification
Reactive oxygen species
business.industry
Ryanodine receptor
Sodium channel
Sodium
General Medicine
Catalase
Cardiovascular disease
Oxidative Stress
chemistry
cardiovascular system
Female
medicine.symptom
business
Cardiomyopathies
Reactive Oxygen Species
Oxidative stress
Research Article
Subjects
Details
- ISSN :
- 23793708
- Volume :
- 6
- Issue :
- 23
- Database :
- OpenAIRE
- Journal :
- JCI insight
- Accession number :
- edsair.doi.dedup.....5ee05ba642f939006937a8e6c1fda8e9