Back to Search
Start Over
Organocatalytic stereoselective cyanosilylation of small ketones
- Source :
- Nature
- Publication Year :
- 2021
-
Abstract
- Enzymatic stereoselectivity has typically been unrivalled by most chemical catalysts, especially in the conversion of small substrates. According to the ‘lock-and-key theory’1,2, enzymes have confined active sites to accommodate their specific reacting substrates, a feature that is typically absent from chemical catalysts. An interesting case in this context is the formation of cyanohydrins from ketones and HCN, as this reaction can be catalysed by various classes of catalysts, including biological, inorganic and organic ones3–7. We now report the development of broadly applicable confined organocatalysts for the highly enantioselective cyanosilylation of aromatic and aliphatic ketones, including the challenging 2-butanone. The selectivity (98:2 enantiomeric ratio (e.r.)) obtained towards its pharmaceutically relevant product is unmatched by any other catalyst class, including engineered biocatalysts. Our results indicate that confined chemical catalysts can be designed that are as selective as enzymes in converting small, unbiased substrates, while still providing a broad scope.
- Subjects :
- Multidisciplinary
Stereoisomerism
Ketones
Catalysis
Subjects
Details
- ISSN :
- 14764687
- Volume :
- 605
- Issue :
- 7908
- Database :
- OpenAIRE
- Journal :
- Nature
- Accession number :
- edsair.doi.dedup.....5ece8f5f8411085706d805b93e6b9ae2