Back to Search Start Over

Octodontomys gliroides

Authors :
Pérez, M. Julieta
Díaz, M. Mónica
Publication Year :
2018
Publisher :
Zenodo, 2018.

Abstract

Octodontomys gliroides (P. Gervais and d’Orbigny, 1844) Mountain Degu Octodon gliroides P. Gervais and d’Orbigny, 1844:22. Type locality “des Andes boliviennes, à Lapaz;” La Paz, Bolivia. Neoctodon simonsi Thomas, 1902:115. Type locality “Mountainous region south and south- east of the Titicaca- Poopo basin. Potosí, 4400 metres,” Bolivia. Octodontomys gliroides: Thomas, 1913:143. First use of current name combination. CONTEXT AND CONTENT. Context as for genus. Octodontomys gliroides is monotypic (Verzi et al. 2015a). Mountain Degu Octodon gliroides P. Gervais and d’Orbigny, 1844:22. Type locality “des Andes boliviennes, à Lapaz;” La Paz, Bolivia. Neoctodon simonsi Thomas, 1902:115. Type locality “Mountainous region south and south- east of the Titicaca- Poopo basin. Potosí, 4400 metres,” Bolivia. Octodontomys gliroides: Thomas, 1913:143. First use of current name combination. CONTEXT AND CONTENT. Context as for genus. Octodontomys gliroides is monotypic (Verzi et al. 2015a). DIAGNOSIS Octodontomys gliroides (Fig. 1) resembles other members of the family Octodontidae, being most similar to the mountain viscacha rat Octomys mimax and species of the genus Tympanoctomys; however, O. gliroides has upper and lower molariforms with an asymmetrical occlusal pattern (Octomys and Tympanoctomys have a figure-8 occlusal pattern—Reig and Quintana 1991; Hutterer 1994; Kramarz 2005). Other distinctive features of the teeth and skull of O. gliroides (Fig. 2) include: the alveolar portion of the 1st molariform tooth (DP4) is slightly inclined anteriorly, medial to the incisor; as a result, an anterior extension of the maxillaries into the posterior margins of the incisive foramina, where DP4 is inserted, is scarcely developed to nearly absent (Verzi 2001; Verzi et al. 2015a). The molariform teeth have folds (flexi or flexids) that are shallow or absent; the maxillary cheek teeth have the anterior lobe protruding as in Octodon, but without a penetrating lingual fold (hypoflexus— Verzi and Carrín Iglesias 1999; Verzi 2001; Verzi et al. 2015a). The auditory bullae are of medium size (14.6 ± 0.7 mm) and slightly inflated compared with other desert-adapted octodontids such as Octomys (15.8 ± 0.3 mm) and Tympanoctomys (17.2 ± 0.9 mm—Mares et al. 2000). GENERAL CHARACTERS Octodontomys gliroides is a medium- to large-sized octodontid, with a body mass ranging from 100–200 g; total length, 200–380 mm; length of tail, 100–190 mm; length of hind foot, 33–40 mm; length of ear, 24–35 mm (Díaz 1999; Mares et al. 2000; Díaz and Barquez 2002; Verzi et al. 2015a). It is a semisubterranean genus of the family Octodontidae and, like Octodon and Tympanoctomys, has large eyes, ears, and hind feet (Lacey and Ebensperger 2007). The pelage is relatively long and silky; dorsal coloration is grayish drab streaked with black; tail has a reddish buffy brush; the venter has white hairs with gray bases, except on the chin and throat where they are pure white, which contrasts sharply with the dorsum (Thomas 1902; Ipinza et al. 1971; Mares et al. 2000; Verzi et al. 2015a). The ears are large, finely covered by short grayish hairs, with white tufts on the anterior ends (Ipinza et al. 1971; Díaz and Barquez 2002). Feet are hairy with the claw covered by hair, the plantar surfaces bear fine granulations (Thomas 1902; Contreras et al. 1987; Díaz and Barquez 2002), and plantar pads are prominent (Ipinza et al. 1971). The tail is nearly 80% of the head and body length; it is bicolored, with an elongated, brown or ochraceous brush extending from the tip. Juveniles are darker with a grayer venter and have an essentially unicolored tail that terminates in a short, black or dark drab brush (Díaz and Barquez 2002; Verzi et al. 2015a). The rostrum is relatively long and narrow; postorbital processes are absent or reduced; interorbital region is relatively broad and divergent with breadth slightly less than the breadth of the rostrum (9.23 mm versus 7.41 mm); lacrimal is large and triangular; palate is short, and the mesopterygoid fossa has an inverted “V” shape, not extending beyond M1; pterygoids leaning on the bullae (Díaz 1999; Mares et al. 2000). Incisive foramina are large with the posterior most ends behind the premaxillary-maxillary suture; the lateral edges of the posterior bor- der of the incisive foramina are not raised (Mares et al. 2000). The lateral flange of the canal for the infraorbital nerve is well developed and has the dorsal end free, not joined to the maxillary (Glanz and Anderson 1990; Verzi et al. 2015a). Masseteric crest and the tubercle for the insertion of the M. masseter medialis pars infraorbitalis are discontinuous (Verzi et al. 1999, 2001; Kramarz 2005). The zygomatic arches are little expanded, with a low and slightly deep jugal fossa for the posterior masseter muscle; shape of suture of jugal and zygomatic process of squamosal squared or rounded (Mares et al. 2000; Verzi et al. 2015a). The lateral supraoccipital processes show greatest development, with the long process extending to the squamosal process and then turning conspicuously downward (Glanz and Anderson 1990). Woods (1984:424, 428) mentioned a “slight lateral supraoccipital process” in both Ctenomyidae and Octodontidae, but Glanz and Anderson (1990) considered this description slightly misleading because the supraoccipital process is well developed in O. gliroides. The paraoccipital processes are small, thick, and incompletely joined to the bullae, with each root directed medially due to the development of the mastoid bullae (Mares et al. 2000; Verzi et al. 2015a). The mandible is slender, low, and moderately hystricognathous; the coronoid process is small; the condylar process is broad and slightly behind the angular process, the latter being short, slender, and slightly flattened; the lunar notch is shallow (Díaz 1999; Mares et al. 2000; Verzi et al. 2015a); the masseteric crest is not prominent (Verzi 2002). Mean cranial measurements (mm, ± SD, sample size in parentheses—Mares et al. 2000, specimens from Argentina and Bolivia) were: greatest length of skull, 45.3 ± 1.3 (25); basal length, 39.6 ± 1.3 (22); zygomatic breadth, 23.3 ± 0.7 (26); mastoid breadth, 22.1 ± 0.7 (21); least interorbital breadth, 9.4 ± 0.4 (29); length of nasals, 16.6 ± 0.9 (26); breadth of rostrum, 8.2 ± 0.3 (26); length of diastema, 11.5 ± 0.5 (28); length of maxillary toothrow, 8.1 ± 0.6 (28); length of bulla, 14.6 ± 0.7 (23); width of bulla, 11.3 ± 0.3 (23); width of zygomatic plate, 1.9 ± 0.2 (26); length of mandibular toothrow, 8.5 ± 0.6 (27); length of mandible, 27.5 ± 0.9 (28). Mean cranial measurements (mm, ± SD, sample size in parentheses—Díaz 1999, specimens from Argentina) were: condyle incisive length, 42.2 ± 1.2 (11); occipitonasal length, 43.8 ± 1.5 (10); braincase breadth, 17.9 ± 0.5 (11); zygomatic breadth, 23.0 ± 0.8 (10); mastoid breadth, 14.2 ± 2.1 (9); least interorbital breadth, 9.3 ± 0.4 (11); length of rostrum, 17.9 ± 0.7 (9); breadth of rostrum, 7.8 ± 0.5 (10); length of nasals, 15.9 ± 0.9 (4); length of diastema, 11.5 ± 0.4 (11); length of maxillary toothrow, 8.7 ± 0.5 (11); greatest alveolar length of M1, 2.7 ± 0.2 (10); alveolar width of M1, 2.08 ± 0.11 (6; please note this was original reported incorrectly as 4 ± 5.7 (10)); greatest length of incisive foramina, 4.07 ± 0.7 (10); palate length, 16.8 ± 0.7 (11); maxima distance between the external border of M3, 7.5 ± 0.5 (11); length of bulla, 14.0 ± 0.9 (10); length of mandibular toothrow, 9.2 ± 0.5 (11); length of mandible, 25.8 ± 1.2 (11). These 2 cited publications differ in mastoid breadth; it is possible that Mares et al. (2000) included part of the bulla in their measurement. The upper incisors are orthodont or slightly proodont, orange, narrow, and short; the lower incisors are orange, high, narrow, with a suboval section, straight lingual enamel edge, and curved labial edge; on the labial side, the enamel extends beyond one-half of the tooth face (Verzi et al. 1999; Verzi 2002). Like all octodontids, O. gliroides is characterized by ever-growing (hypsodont) molar teeth. In the upper molariforms, the folds (flexi) are absent in the adult and the posterior lobe is not extended labially. The molariforms are asymmetrical with no reentrant folds (Hutterer 1994), except in juveniles, which have flexids and fossettids (Verzi 1994; Verzi et al. 2016). Lower molariform teeth have an asymmetrical occlusal pattern, nearly figure-8 shaped, with slightly oblique and rounded lobes and shallow traces of folds; deciduous dp4 with mesoflexid reduced or absent and hypoflexid barely visible (Verzi 1994; Verzi et al. 2015a); the mesoflexid of m1 and m2 remains open in advanced stages of wear (Kramarz 2005); with mesoflexid less evident than hypoflexid (Verzi 1994); last upper and lower molars (M3/m3) reduced in size (Verzi 2002; Verzi et al. 2015a). O. gliroides has oblique, posterolabial-anterolingual, unilateral chewing (anterolingual jaw displacement and alternate occlusion); according to phylogenetic analyses, this is primitive for octodontids (Verzi 2001; Olivares et al. 2004). The masticatory direction (in molariform teeth, defined as asymmetry in dentine wear relative to the sagittal plane) is 58° in Octodontomys (Vassallo and Verzi 2001). Hutterer (1994) considered the occlusal pattern of Octodontomys to be plesiomorphic, because it matches with the molars of the Oligocene Platypittamys, a putative octodontid. The similarities in the cranial morphology of O. gliroides and the basal octodontoid rodent Prospaniomys make O. gliroides an optimal species for reconstructing masticatory muscle origins and insertions of this extinct species (Álvarez and Arnal 2015). The data matrix of Olivares et al. (2012) and Verzi et al. (2016) should be consulted for additional cranial and dental characters for O. gliroides. Álvarez et al. (2011) and Álvarez et al. (2015) examined 2- and 3-dimensional craniomandibular geometric morphometric characters in an evolutionary context. DISTRIBUTION Octodontomys gliroides has a disjunct distribution (Fig. 3) in the Andean and Sub-Andean areas of southwestern Bolivia (from La Paz Department to Tarija Department), northern Chile (Arica- Parinacota and Tarapacá regions), and northwestern Argentina (several localities in Salta and Jujuy provinces, one in La Rioja Province, being highly probably in Catamarca Province—Cabrera 1961; Mann Fischer 1978; Pine et al. 1979; Contreras et al. 1987; Mares et al. 2000; Muñoz-Pedreros 2000; Díaz and Barquez 2002; Díaz and Verzi 2006; Díaz and Barquez 2007; Verzi et al. 2015a; Rivera et al. 2016). In Argentina, this species occupies the High Andes, Monte Desert of Mountains and Isolated Valleys, and Puna ecoregions (Díaz and Verzi 2006). Ojeda et al. (2011) mentioned that O. gliroides is restricted to northern Monte of Mountains and Isolated Valleys. It is found on both sides of the Andes, a distribution marked by an east to west gradient of decreasing rainfall that results in east and west (from theAndes) populations with contrasting differences in the abundance and patchiness of vegetation cover (Rivera et al. 2014, 2016). This species has an elevation range from about 1,200 m at Villa Union in La Rioja Province, Argentina to about 4,400 m in Potosí, Bolivia. Verzi et al. (2015a) indicated that the lowest altitude for the distribution of this species is 200– 300 m. However, this information is incorrect because the data taken from Diaz and Ojeda (1999) correspond to measurements of precipitation (200–300 mm), and this information was misinterpreted by editors during the final process of editing the book Mammals of South America (Patton et al. 2015). FOSSIL RECORD Although Octodontomys gliroides has no fossil record, it is the most primitive extant octodontid. Its cranial and dental anatomy resemble some species from the Miocene and Pliocene of Argentina (Verzi and Carrín Iglesias 1999; Verzi et al. 1999; Verzi 2002; Verzi et al. 2014), suggesting that it may be an early octodontid offshoot (Verzi et al. 2015b). Gallardo and Kirsch (2001) mentioned that Verzi (1994) considered hypsodonty in Ctenomys and Octodontomys to be indicative of common ancestry and re-erected the subfamily Ctenomyinae to include these 2 genera; however, their interpretation of Verzi’s conclusion was erroneous because Verzi stated “hypsodonty has originated independently several times in rodents” (see Verzi 1994:92) and thus does not support the idea of common ancestry. Opazo (2005) estimated the divergence of Octodontomys from its sister clade (Octodon + Spalacopus + Aconaemys) at 6.07 ± 1.34 million years ago, near the end of the Miocene. This value agrees with the results of both Gallardo and Kirsch (2001), who used DNA hybridization data, and Verzi et al. (2016), using morphological and molecular data, to obtain an estimated divergence of 5–7 million years ago; but it is older than the estimate of Honeycutt et al. (2003; 2.9–4.1 million years ago) based on molecular data (nucleotide sequence data from nuclear receptor and mitochondrial genes nucleotide sequence). The morphology of the lower incisor is shared with the extinct octodontid Neophanomys, but whether this character state is primitive or derived is difficult to determine (Verzi et al. 1999). Octodontomys has been recorded in the archaeological site Inca Cueva 5 site, Jujuy Province, Argentina (2,120 ± 120 to 780 ± 100 years before present) based on 3 left mandibular rami; the area corresponds to the oriental border of the Puna steppe (Teta and Ortiz 2002). Octodontomys gliroides produces middens (amalgamations of plant remains, bones, insects, feathers, and rodent feces, glued together within a crystallized matrix of rodent urine), which have proven to be important sources of paleontological evidence (Betancourt and Saavedra 2002; Latorre et al. 2005). In the Atacama (Chile), middens have been recorded from possibly the Quaternary for O. gliroides as well as other families of rodents (e.g., Chinchillidae, Abrocomidae, and Muridae—Latorre et al. 2005). Arnal and Vucetich (2015a, 2015b) used extant species of the family Octodontidae, including O. gliroides, to revise the taxonomy of the fossil rodent Acaremys (Hystricognathi, Octodontoidea, Acaremyidae) and to analyze phylogenetic relationships of the Pan-Octodontoidea group. FORM AND FUNCTION Dental formula for Octodontomys gliroides is i 1/1, c 0/0, p 1/1, m 3/3, total 20. Buccal surfaces of the upper teeth are progressively rotated more distally from the distal to the mesial ends of the arches, with DP4 being nearly transverse to the line of the arch (Miles and Grigson 1990). O. gliroides has simplified teeth without reentrant angles or cement (Glanz and Anderson 1990). In hypsodont rodents, the enamel of the molariforms typically has a different structure on the side of first contact (leading edge) and the opposite face (trailing edge); O. gliroides is more primitive compared to Ctenomys in this regard, with Hunter– Schreger bands limited to some areas. In a study of ultrastructure of the incisor enamel and delineated morphofunctional traits among octodontoid genera with disparate digging adaptations, O. gliroides had an enamel thickness more than double that of the other taxa studied (e.g., Ctenomys, Octodon, Dactylomys — Vieytes et al. 2007). The relative thickness of external index showed the lowest values in the fossorial O. gliroides and the arboreal Bolivian bamboo rat Dactylomys boliviensis than the other species studied, and this has been interpreted by Vieytes et al. (2007) as indicative of low wear resistance. The middle ear of O. gliroides has 3 cavities: bulla, anterior, and posterior recesses. The bulla is divided into 8–10 large pneumatized air cells, and the cochlea protrudes into the tympanic cavity medially (Heller et al. 1976). In the normal ear, these structures have fairly uniform radiolucency without evidence of thickening of the septae of the bulla or areas of bony sclerosis (Heller et al. 1976). In extant species of fossorial rodents, the degree of reduction in size of the eye indicates the adaptation level to the subterranean lifestyle (Pearson 1984). The size of the orbital cavity provides information about the size of the eye and can be estimated using the zygomatic index (see Verzi 2002:316). The comparative analysis of Verzi (2008) showed that echyimid rodents have relatively larger orbits than octodontids (for O. gliroides, mean index value of 1.22, range 1.13–1.38). The eyes of O. gliroides are much larger than those of Octodon, matching the inferred crepuscular or nocturnal habits of this species (Rowlands 1974, not seen cited in Wilson and Kleiman 1974) compared to the apparently diurnal habits of Octodon (Wilson and Kleiman 1974). Vasallo and Mora (2007) included O. gliroides in an allometric analysis of the effect of size on skull attributes (development of the mandibular angle and masseteric crest, and the robustness of incisors) in ctenomyid and octodontid rodents. They concluded that in Octodontomys, as in other octodontids and in ctenomyids, mandibular width and cross-sectional shape of the incisors show a significant and positive association with basicranium length. They also noted that O. gliroides clearly differs from Ctenomys by the intensification of the hystricognath condition (lateral expansion of the mandibular angle and masseteric crest) in Ctenomys. The glans penis of Octodontomys has 2 long spines on each side of the intromittent sac (2-2 pattern), although some specimens show a 2-3 pattern (Spotorno 1979; Contreras et al. 1993); these spines are the longest among octodontids (average length 5.6 mm—Contreras et al. 1993). These features indicate that O. gliroides is more closely related to generalist and subterranean species than to Octomys or Tympanoctomys, as the 1-1 pattern is interpreted to be ancestral and the 2-2 pattern derived in extant octodontid rodents (Contreras et al. 1993). O. gliroides shows the longest baculum among octodontids, which gradually tapers from the base to the tip (Contreras et al. 1993). The vaginal wall of O. gliroides shows a hardened surface and does not have a complementary space to hold the spikes in a distal or lateral position, suggesting that they can be accommodated only when pointing backwards (Contreras et al. 1993). Cummin<br />Published as part of Pérez, M. Julieta & Díaz, M. Mónica, 2018, Octodontomys gliroides (Rodentia: Octodontidae), pp. 74-83 in Mammalian Species 50 (963) on pages 75-80, DOI: 10.1093/mspecies/sey010, http://zenodo.org/record/4573547<br />{"references":["THOMAS, O. 1902. On two new genera and rodents from the highlands of Bolivia. Proceedings of the Zoological Society of London 1: 114 - 117.","THOMAS, O. 1913. On small mammals collected in Jujuy by Senor E. Budin. Annals and Magazine of Natural History, Including Zoology, Botany and Geology, London 8: 136 - 143.","VERZI, D. H., M. M. DiAZ, AND R. M. BARQUEZ. 2015 a. Genus Octodontomys. Pp. 1043 - 1048 in Mammals of South America. Vol. 2, rodents (J. L. Patton, U. F. J. Pardinas, and G. D'Elia, eds.). University of Chicago Press, Chicago, Illinois.","HUTTERER, R. 1994. Island rodents: a new species of Octodon from Isla Mocha, Chile (Mammalia: Octodontidae). Zeitschrift fur Saugetierkunde 59: 27 - 41.","KRAMARZ, A. G. 2005. A primitive cephalomyid hystricognath rodent from the early Miocene of northern Patagonia, Argentina. Acta Palaeontologia Polonica 50: 249 - 258.","VERZI, D. H. 2001. Phylogenetic position of Abalosia and the evolution of the extant Octodontinae (Rodentia, Caviomorpha, Octodontidae). Acta Theriologica 46: 243 - 268.","MARES, M. A., J. K. BRAUN, R. M. BARQUEZ, AND M. M. DiAZ. 2000. Two new genera and species of halophytic desert mammals from isolated Salt Flats in Argentina. Occasional Papers, Museum of Texas Tech University 203: 1 - 27.","IPINZA, J. M., TAMAZO, AND J. TORRMANN. 1971. Octodontidae in Chile. Noticiario Mensual, Museo Nacional de Historia Natural, Santiago, Chile 16: 3 - 10.","CONTRERAS, L. C., J. C. TORRES- MURA, AND J. L. YAnEZ. 1987. Biogeography of octodontid rodents: an eco-evolutionary hypothesis. Fieldiana: Zoology 39: 401 - 411.","WOODS, C. A. 1984. Hystricognath rodents. Pp. 389 - 446 in Orders and families of recent mammals of the world (S. Anderson and J. K. Jones, Jr., eds.). Wiley, New York.","VERZI, D. H. 2002. Patrones de evolucion morfologica en Ctenomyinae (Rodentia, Octodontidae). Mastozoologia Neotropical 9: 309 - 328.","VERZI, D. H. 1994. Origen y evolucion de los Ctenomyinae (Rodentia, Octodontidae). Un analisis de anatomia craneo-dentaria. Ph. D. dissertation, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina.","VERZI, D. H., A. I. OLIVARES, C. C. MORGAN, AND A. ALVAREZ. 2016. Contrasting phylogenetic and diversity patterns in octodontoid rodents and a new definition of the family Abrocomidae. Journal of Mammalian Evolution 23: 93 - 115.","OLIVARES, A. I., D. H. VERZI, AND A. I. V ASALLO. 2004. Masticatory morphological diversity and chewing modes in South American caviomorph rodents (family Octodontidae). Journal of Zoology 263: 167 - 177.","OLIVARES, A. I., D. H. VERZI, M. G. VUCETICH, AND C. I. MONTALVO. 2012. Phylogenetic affinities of the late Miocene echimyid † Pampamys and the age of Thrichomys (Rodentia, Hystricognathi). Journal of Mammalogy 93: 76 - 86.","ALVAREZ, A., S. I. PeREZ, AND D. H. VERZI. 2011. Early evolutionary differentiation of morphological variation in the mandible of South American caviomorph rodents (Rodentia, Caviomorpha). Journal of Evolutionary Biology 24: 2687 - 2695.","MANN FISCHER, G. 1978. Los pequenos mamiferos de Chile (marsupiales, quiropteros, edentados y roedores). Gayana, Zoologia 40: 1 - 342.","PINE, R. H., S. D. MILLER, AND M. L. SCHAMBERGER. 1979. Contributions to the Mammalogy of Chile. Mammalia 43: 339 - 376.","RIVERA, D. S., J. A. VIANNA, L. A. EBENSPERGER, AND R. E. PALMA. 2016. Phylogeography and demographic history of the Andean degu, Octodontomys gliroides (Rodentia: Octodontidae). Zoological Journal of the Linnean Society 178: 410 - 430.","OJEDA, R. A., S. TABENI, AND V. CORBALAN. 2011. Mammals of the Monte Desert: from regional to local assemblages. Journal of Mammalogy 92: 1236 - 1244.","RIVERA, D. S., S. ABADES, F. D. ALFARO, AND L. A. EBENSPERGER. 2014. Sociality of Octodontomys gliroides and other octodontid rodents reflect the influence of phylogeny. Journal of Mammalogy 95: 968 - 980.","VERZI, D. H., A. I. OLIVARES, AND C. C. MORGAN. 2014. Phylogeny and evolutionary patterns of South American octodontoid rodents. Acta Palaeontologica Polonica 59: 757 - 769.","VERZI, D. H., C. C. MORGAN, AND A. I. OLIVARES. 2015 b. The history of South American octodontoid rodents and its contribution to evolutionary generalisations. Pp. 139 - 163 in Evolution of the rodents: advances in phylogeny, functional morphology and development (P. G. Cox and L. Hautier, eds.). Vol. 5. Cambridge University Press, Cambridge, Unikted Kingdom.","OPAZO, J. C. 2005. A molecular timescale for caviomorph rodents (Mammalia, Hystricognathi). Molecular Phylogenetics and Evolution 37: 932 - 937.","HONEYCUTT, R. L., D. L. ROWE, AND M. H. GALLARDO. 2003. Molecular systematics of the South American caviomorph rodents: relationships among species and genera in the family Octodontidae. Molecular Phylogenetics and Evolution 26: 476 - 489.","LATORRE C., ET AL. 2005. Chapter six \" Late Quaternary History of Atacama Desert \". Pp. 73 - 90 in Archaeology and environmental history of the southern deserts (M. Smith and P. Hesse, eds.). National Museum of Australia Press, Canberra, Australia.","VIEYTES, E. C., C. C. MORGAN, AND D. H. VERZI. 2007. Adaptive diversity of incisor enamel microstructure in South American burrowing rodents (family Ctenomyidae, Caviomorpha). Journal of Anatomy 211: 296 - 302.","HELLER, R. M., M. BUSH, J. STRANDBERG, A. E. JAMES, Jr., AND E. SMITH. 1976. Inflammatory disease of the temporal bone of the brush tail rat (Octodontomys gliroides): a radiologic-clinical-pathologic correlation. Veterinary Radiology and Ultrasound 17: 161 - 164.","PEARSON, O. P. 1984. Taxonomy and natural history of some fossorial rodents of Patagonia, southern Argentina. Journal of Zoology, London 202: 225 - 237.","VERZI, D. H. 2008. Phylogeny and adaptive diversity of rodents of the family Ctenomyidae (Caviomorpha): delimiting lineages and genera in the fossil record. Journal of Zoology 274: 386 - 394.","ROWLANDS, I. W. 1974. The habitat of mountain viscacha (Lagidium) in the Andes. Pp. 131 - 141 in I. Biology of hystricomorph rodents (W. Rowlands and B. J. Weir, eds.). Symposia of the Zoological Society of London 34. Academic Press, London, United Kingdom.","KLEIMAN, D. G. 1974. Patterns of behaviour in hystricomorph rodents. Pp. 171 - 209 in The biology of hystricomorph rodents (I. W. Rowlands and B. J. Weir, eds.). Academic Press, New York.","SPOTORNO, A. E. 1979. Contrastacion de la macrosistematica de roedores caviomorfos por analisis comparativo de la morfologia reproductiva masculina. Archivos de Biologia y Medicina Experimentales 12: 97 - 106.","CONTRERAS, L. C., J. C. TORRES- MURA, A. E. S POTORNO, AND F. M. CATZEFLIS. 1993. Morphological variation of the glans penis of South American octodontid and abrocomid rodents. Journal of Mammalogy 74: 926 - 935.","BOZINOVIC, F. 1992. Rate of basal metabolism of grazing rodents from different habitats. Journal of Mammalogy 73: 379 - 384.","WEIGL, R. 2005. Longevity of mammals in captivity; from the living collections of the world. Kleine Senckenberg-Reihe 48: Stuttgart, Germany.","WEIR, B. J. 1974. Reproductive characteristics of hystricomorph rodents. Pp. 265 - 299 in The biology of hystricomorph rodents (I. W. Rowlands and B. J. Weir, eds.). Academic Press, New York.","ANDERSON, S. 1997. Mammals of Bolivia. Taxonomy and distribution. Bulletin of the American Museum of Natural History 231: 1 - 652.","WALKER, E. P. 1964. Mammals of the world. Vol. 2. Johns Hopkins Press, Baltimore, Maryland.","RIVERA, D. S. 2013. Organizacion social de Octodontomys gliroides (Gervais y d'Orbigny, 1844) y las implicaciones sobre el origen y evolucion de la sociabilidad en roedores octodontidos. Ph. D. dissertation, Pontificia Universidad Catolica de Chile, Santiago, Chile.","REPPUCCI, J. I. 2012. Ecologia y abundancia poblacional del gato andino (Leopardus jacobita) y gato del pajonal (L. colocolo) en los altos Andes Argentinos. Ph. D. dissertation, Departamento de Biologia Bioquimica y Farmacia, Universidad Nacional del Sur, Bahia Blanca, Argentina.","SCHWEIGMANN, N. J., ET AL. 1992. A new host of Tripanozoma cruzi from Jujuy, Argentina: Octodontomys gliroides (Gervais & d'Orbigny, 1844) (Rodentia: Octodontidae). Memorias do Instituto Oswaldo Cruz 87: 217 - 220.","BUITRAGO, R., ET AL. 2016. Blood meal sources of wild and domestic Triatoma infestans (Hemiptera: Reduviidae) in Bolivia: connectivity between cycles of transmission of Trypanosoma cruzi. Parasites and Vectors 9: 214.","SMIT, F. G. A. M. 1987. An illustrated catalogue of the Rothschild collection of fleas (Siphonaptera) in the Bristish Museum (Natural History). Oxford University Press, Brittish Museum (Natural History), London, United Kingdom.","BEAUCOURNU, J. C., S. BELAZ, S. MUnOZ- LeAL, AND D. GONZALEZ- ACUnA. 2013. A new flea, Ectinorus (Ectinorus) insignis n. sp. (Siphonaptera, Rhopalopsyllidae, Parapsyllinae), with notes on the subgenus Ectinorus in Chile and comments on unciform sclerotization in the superfamily Malacopsylloidea. Parasite 20: 1 - 12.","BEAUCOURNU, J. C., L. MORENO, AND D. GONZALEZ- ACUnA. 2014. Fleas (Insecta-Siphonaptera) of Chile: a review. Zootaxa 3900: 151 - 203.","MORENO SALAS, L., D. DEL C. CASTRO, J. C. TORRES- MURA, AND D. GONZALEZ- ACUnA. 2005. Phthiraptera (Amblycera andAnoplura) parasites of the family Octodontidae, Ctenomyidae and Abrocomidae (Mammalia: Rodentia) from Chile. Rudolstadter Naturhistorische Schriften 13: 115 - 118.","EISENBERG, J. F. 1974. The function and motivational basis of hystricomorph vocalizations. Symposia of the Zoological Society of London 34: 211 - 247.","SCHLEICH, C. E., S. VEITL, E. KNOTKOVA, AND S. BEGALL. 2007. Acoustic communication in subterranean rodents. Pp. 113 - 128 in Subterranean rodents: news from underground (S. Begall, H. Burda, and C. E. Schleich, eds.). Springer, Heidelberg, Germany.","CONTRERAS, L. C., J. C. TORRES- MURA, A. E. SPOTORNO, AND L. I. WALKER. 1994. Chromosomes of Octomys mimax and Octodontomys gliroides and relationships of octodontid rodents. Journal of Mammalogy 75: 768 - 774.","CONTRERAS, L. C., J. C. TORRES- MURA, AND A. E. SPOTORNO. 1990. The largest known chromosome number for a mammal in a South American desert rodent. Experientia 46: 506 - 509.","GALLARDO, M. H. 1992. Karyotypic evolution in octodontid rodents based on C-band analysis. Journal of Mammalogy 73: 89 - 98.","SPOTORNO, A. E., ET AL. 1995. Chromosome divergence of Octodon lunatus and Abrocoma bennetti and the origins of Octodontoidea (Rodentia, Hystricognathi). Revista Chilena de Historia Natural 68: 227 - 239.","SPOTORNO, A. E., L. I. WALKER, L. C. CONTRERAS, J. PINCHEIRA, AND R. FERNANDEZ DONOSO. 1988. Cromosomas ancestrales en Octodontidae y Abrocomidae. Archivos de Biologia y Medicina Experimentales 21: 527.","GALLARDO, M. H. 1997. A saltation model of karyotypic evolution in the Octodontoidea (Mammalia, Rodentia). Pp. 347 - 365 in Chromosomes today (H. Henriques-Gil, J. S. Parker, and M. J. Puertas, eds.). Vol. 12. Chapman & Hall, London, United Kingdom.","ROSSI, M. S., O. A. REIG, AND J. ZORZoPULOS. 1990. Evidence for rollingcircle replication in a major satellite DNA from the South American rodents of the genus Ctenomys. Molecular Biology and Evolution 7: 340 - 350.","GALLARDO, M. H., R. A. OJEDA, C. GONZALEZ, AND C. RiOS. 2007. The Octodontidae revisited. Pp. 695 - 719 in The quintessential naturalist: honoring the life and legacy of Oliver Pearson (D. A. Kelt, E. P. Lessa, J. A. Salazar-Bravo, and J. L. Patton, eds.). University of California Publications in Zoology, Berkeley.","GALLARDO, M. H., J. W. BICKHAM, G. KAUSEL, N. KoHLER, AND R. L. HONEYCUTT. 2003. Gradual and quantum genome size shifts in the hystricognath rodents. Journal of Evolutionary Biology 16: 163 - 169.","MELEN, G. J., C. G. PESCE, M. S. ROSSI, AND A. R. KORNBLIHTT. 1999. Novel processing in a mammalian nuclear 28 S pre-rRNA: tissue-specific elimination of an ' intron' bearing a hidden break site. The EMBO Journal 18: 3107 - 3118.","TIRIRA, D., C. BOADA, WEKSLER, M., ANDERSON, R. P., AND GoMEZ- LAVERDE, M. 2008. Octodontomys gliroides. The IUCN Red List of Threatened Species 2008: e. T 15091 A 4493577. http: // dx. doi. org / 10.2305 / IUCN. UK. 2008. RLTS. T 15091 A 4493577. in. Accessed 24 November 2015.","OJEDA, R. A. 2012. Family Octodontidae. Pp. 189 - 191 in Libro rojo, mamiferos amenazados de la Argentina (R. A. Ojeda, V. Chillo, and G. B. Diaz Isenrath, eds.). Sociedad Argentina para el Estudio de los Mamiferos (SAREM), Buenos Aires, Argentina."]}

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....5ec9a864ab955c651d3e87dab9999bf2
Full Text :
https://doi.org/10.5281/zenodo.4592305