Back to Search Start Over

Clinical and functional characterization of recurrent missense variants implicated in THOC6-related intellectual disability

Authors :
Jean-Louis Mandel
Raman Kumar
Jozef Gecz
Lijia Huang
Francesca Mattioli
Chandree Beaulieu
Amélie Piton
Andrew Gunter
Bertrand Isidor
Micheil Innes
Omar A. Abdul-Rahman
Chimie de la matière complexe (CMC)
Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Institut de génétique et biologie moléculaire et cellulaire (IGBMC)
Université Louis Pasteur - Strasbourg I-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)
Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Human molecular genetics, Human molecular genetics online, 2019, 28 (6), pp.952-960. ⟨10.1093/hmg/ddy391⟩
Publication Year :
2018

Abstract

THOC6 encodes a subunit of the THO complex that is part of a highly conserved transcription and export complex known to have roles in mRNA processing and export. Few homozygous or compound heterozygous variants have been identified in the THOC6 gene in patients with a syndromic form of intellectual disability [Beaulieu-Boycott-Innes syndrome (BBIS); MIM: 613680]. Here we report two additional individuals affected with BBIS originating from the north of Europe and sharing a haplotype composed of three very rare missense changes in the THOC6 gene-Trp100Arg, Val234Leu, Gly275Asp. The first individual is a boy who is homozygous for the three-variant haplotype due to a maternal uniparental disomy event. The second is a girl who is compound heterozygous for this haplotype and a previously reported Gly190Glu missense variant. We analyzed the impact of these different amino acid changes on THOC6 protein expression, cellular localization and interaction with the other THO complex subunits. We show that the different THOC6 variants alter the physiological nuclear localizationof the protein and its interaction with at least two THO subunits, THOC1 and THOC5. Two amino acid changes from the three-variant haplotype alone have specific effects and might contribute to the pathogenicity of the haplotype. Overall, we expanded the cohort of currently known individuals with BBIS by reporting two individuals carrying the same recurrent European haplotype composed of three amino acid changes, affecting THOC6 localization and interaction with THO protein partners.

Details

ISSN :
14602083
Volume :
28
Issue :
6
Database :
OpenAIRE
Journal :
Human molecular genetics
Accession number :
edsair.doi.dedup.....5ec1c7bb898bf4f7ab341e5c6f4eda44