Back to Search Start Over

A combinatorial approach to Donkin-Koppinen filtrations of general linear supergroups

Authors :
František Marko
Source :
Communications in Algebra. 49:2961-2975
Publication Year :
2021
Publisher :
Informa UK Limited, 2021.

Abstract

For a general linear supergroup $G=GL(m|n)$, we consider a natural isomorphism $\phi: G \to U^-\times G_{ev} \times U^+$, where $G_{ev}$ is the even subsupergroup of $G$, and $U^-$, $U^+$ are appropriate odd unipotent subsupergroups of $G$. We compute the action of odd superderivations on the images $\phi^*(x_{ij})$ of the generators of $K[G]$. We describe a specific ordering of the dominant weights $X(T)^+$ of $GL(m|n)$ for which there exists a Donkin-Koppinen filtration of the coordinate algebra $K[G]$. Let $\Gamma$ be a finitely generated ideal $\Gamma$ of $X(T)^+$ and $O_{\Gamma}(K[G])$ be the largest $\Gamma$-subsupermodule of $K[G]$ having simple composition factors of highest weights $\lambda\in \Gamma$. We apply combinatorial techniques, using generalized bideterminants, to determine a basis of $G$-superbimodules appearing in Donkin-Koppinen filtration of $O_{\Gamma}(K[G])$.

Details

ISSN :
15324125 and 00927872
Volume :
49
Database :
OpenAIRE
Journal :
Communications in Algebra
Accession number :
edsair.doi.dedup.....5e9b7703f770cb347ce66386178763f2
Full Text :
https://doi.org/10.1080/00927872.2021.1886303