Back to Search Start Over

Targeted plant defense: silicon conserves hormonal defense signaling impacting chewing but not fluidā€feeding herbivores

Authors :
Adam Frew
Casey R. Hall
Scott N. Johnson
James M. W. Ryalls
Susan E. Hartley
Source :
Ecology. 102
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

Plants deploy an arsenal of chemical and physical defenses against arthropod herbivores, but it may be most cost efficient to produce these only when attacked. Herbivory activates complex signaling pathways involving several phytohormones, including jasmonic acid (JA), which regulate production of defensive compounds. The Poaceae also have the capacity to take up large amounts of silicon (Si), which accumulates in plant tissues. Si accumulation has antiherbivore properties, but it is poorly understood how Si defenses relate to defense hormone signaling. Here we show that Si enrichment causes the model grass Brachypodium distachyon to show lower levels of JA induction when attacked by chewing herbivores. Triggering this hormone even at lower concentrations, however, prompts Si uptake and physical defenses (e.g., leaf hairs), which negatively impact chewing herbivores. Removal of leaf hairs restored performance. Crucially, activation of such Si-based defense is herbivore-specific and occurred only in response to chewing and not fluid-feeding (aphid) herbivores. This aligned with our meta-analysis of 88 studies that showed Si defenses were more effective against chewing herbivores than fluid feeders. Our results suggest integration between herbivore defenses in a model Si-accumulating plant, which potentially allows it to avoid unnecessary activation of other costly defenses.

Details

ISSN :
19399170 and 00129658
Volume :
102
Database :
OpenAIRE
Journal :
Ecology
Accession number :
edsair.doi.dedup.....5e94cdaaa1048aa44a1e137ac8dae0a7
Full Text :
https://doi.org/10.1002/ecy.3250