Back to Search
Start Over
Enhanced weight-based clustering algorithm to provide reliable delivery for VANET safety applications
- Source :
- PLoS ONE, Vol 14, Iss 4, p e0214664 (2019), PLoS ONE
- Publication Year :
- 2019
- Publisher :
- Public Library of Science (PLoS), 2019.
-
Abstract
- A vehicular ad hoc network (VANET) is an emerging and promising wireless technology aimed to improve traffic safety and provide comfort to road users. However, the high mobility of vehicles and frequent topology changes pose a considerable challenge to the reliable delivery of safety applications. Clustering is one of the control techniques used in VANET to make the frequent topology changes less dynamic. Nevertheless, research has shown that most of the existing clustering algorithms focus on cluster head (CH) election with very few addressing other critical issues such as cluster formation and maintenance. This has led to unstable clusters which could affect the timely delivery of safety applications. In this study, enhanced weight-based clustering algorithm (EWCA) was developed to address these challenges. We considered any vehicle moving on the same road segment with the same road ID and within the transmission range of its neighbour to be suitable for the cluster formation process. This was attributed to the fact that all safety messages are expected to be shared among the vehicles within the vicinity irrespective of their relative speedto avoid any hazardous situation. To elect a CH, we identified some metrics on the basis of the vehicle mobility information. Each vehicle was associated with a predefined weight value based on its relevance. A vehicle with the highest weight value was elected as the primary cluster head (PCH). We also introduced a secondary cluster head (SeCH) as a backup to the PCH to improve the cluster stability. SeCH took over the leadership whenever the PCH was not suitable for continuing with the leadership. The simulation results of the proposed approach showed a better performance with an increase of approximately40%- 45% in the cluster stability when compared with the existing approaches. Similarly, cluster formation messages were significantly minimized, hence reducing the communication overhead to the system and improving the reliable delivery of the safety applications.
- Subjects :
- Computer science
Normal Distribution
Social Sciences
Transportation
02 engineering and technology
Elections
0302 clinical medicine
Sociology
Backup
Medicine and Health Sciences
0202 electrical engineering, electronic engineering, information engineering
Public and Occupational Health
030212 general & internal medicine
Multidisciplinary
Geography
Applied Mathematics
Simulation and Modeling
Accidents, Traffic
Transportation Infrastructure
Navigation
Motor Vehicles
Physical Sciences
Engineering and Technology
Medicine
Safety
Wireless Technology
Algorithms
Research Article
Computer network
Political Science
Science
Stability (learning theory)
Research and Analysis Methods
Human Geography
Civil Engineering
Clustering Algorithms
Computer Communication Networks
03 medical and health sciences
Global Positioning System
Wireless
Overhead (computing)
Relevance (information retrieval)
Cluster analysis
Vehicular ad hoc network
business.industry
Traffic Safety
020206 networking & telecommunications
Probability Theory
Probability Distribution
Communications
Roads
Earth Sciences
Human Mobility
business
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 19326203
- Volume :
- 14
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- PLoS ONE
- Accession number :
- edsair.doi.dedup.....5e910ade0e2a6229c7e18767b5182598