Back to Search
Start Over
Synthesis, Characterization, and Reactivity of Ethynyl- and Propynyl-Terminated Si(111) Surfaces
- Source :
- The Journal of Physical Chemistry C. 119:19847-19862
- Publication Year :
- 2015
- Publisher :
- American Chemical Society (ACS), 2015.
-
Abstract
- Ethynyl- and propynyl-terminated Si(111) surfaces synthesized using a two-step halogenation/alkylation method have been characterized by transmission infrared spectroscopy (TIRS), high-resolution electron energy-loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), atomic-force microscopy (AFM), electrochemical scanning–tunneling microscopy (EC-STM) and measurements of surface recombination velocities (S). For the ethynyl-terminated Si(111) surface, TIRS revealed signals corresponding to ethynyl ≡C–H and C≡C stretching oriented perpendicular to the surface, HREELS revealed a Si–C stretching signal, and XPS data showed the presence of C bound to Si with a fractional monolayer (ML) coverage (Φ) of Φ_(Si–CCH) = 0.63 ± 0.08 ML. The ethynyl-terminated surfaces were also partially terminated by Si–OH groups (Φ_(Si–OH) = 0.35 ± 0.03 ML) with limited formation of Si^(3+) and Si^(4+) oxides. For the propynyl-terminated Si(111) surface, TIRS revealed the presence of a (C–H)CH_3 symmetric bending, or “umbrella,” peak oriented perpendicular to the surface, while HREELS revealed signals corresponding to Si–C and C≡C stretching, and XPS showed C bound to Si with Φ_(Si–CCCH_3) = 1.05 ± 0.06 ML. The LEED patterns were consistent with a (1 × 1) surface unit cell for both surfaces, but room-temperature EC-STM indicated that the surfaces did not exhibit long-range ordering. HCC–Si(111) and CH_3CC–Si(111) surfaces yielded S values of (3.5 ± 0.1) × 10^3 and (5 ± 1) × 10^2 cm s^(–1), respectively, after 581 h exposure to air. These observations are consistent with the covalent binding of ethynyl and propynyl groups, respectively, to the Si(111) surface.
- Subjects :
- Propynyl
Analytical chemistry
Infrared spectroscopy
Surfaces, Coatings and Films
Electronic, Optical and Magnetic Materials
Crystallography
chemistry.chemical_compound
General Energy
X-ray photoelectron spectroscopy
Electron diffraction
chemistry
Microscopy
Monolayer
Reactivity (chemistry)
Physical and Theoretical Chemistry
Spectroscopy
Subjects
Details
- ISSN :
- 19327455 and 19327447
- Volume :
- 119
- Database :
- OpenAIRE
- Journal :
- The Journal of Physical Chemistry C
- Accession number :
- edsair.doi.dedup.....5e86feec0054de44e9d8cd01827bb367