Back to Search Start Over

Conditional Deletion of Bmal1 Accentuates Microvascular and Macrovascular Injury

Authors :
Ashay D. Bhatwadekar
Maria B. Grant
Qianyi Luo
James M. Dominguez
Eleni Beli
Sergio Caballero
Jonathan Chen
Mark S. Segal
Alpha Alex
Tatiana E. Salazar
Julia V. Busik
Yanpeng Diao
Source :
The American Journal of Pathology. 187:1426-1435
Publication Year :
2017
Publisher :
Elsevier BV, 2017.

Abstract

The brain and muscle aryl hydrocarbon receptor nuclear translocator–like protein (BMAL)-1 constitutes a major transcriptional regulator of the circadian clock. Here, we explored the impact of conditional deletion of Bmal1 in endothelium and hematopoietic cells in murine models of microvascular and macrovascular injury. We used two models of Bmal1 fx/fx ; Tek-Cre mice, a retinal ischemia/reperfusion model and a neointimal hyperplasia model of the femoral artery. Eyes were enumerated for acellular capillaries and were stained for oxidative damage markers using nitrotyrosine immunohistochemistry. LSK (lineage-negative, stem cell antigen-1–positive, c- Kit –positive) cells were quantified and proliferation assessed. Hematopoiesis is influenced by innervation to the bone marrow, which we assessed using IHC analysis. The number of acellular capillaries increased threefold, and nitrotyrosine staining increased 1.5-fold, in the retinas of Bmal1 fx/fx ; Tek-Cre mice. The number of LSK cells from the Bmal1 fx/fx ; Tek-Cre mice decreased by 1.5-fold and was accompanied by a profound decrease in proliferative potential. Bmal1 fx/fx ; Tek-Cre mice also exhibited evidence of bone marrow denervation, demonstrating a loss of neurofilament-200 staining. Injured femoral arteries showed a 20% increase in neointimal hyperplasia compared with similarly injured wild-type controls. Our study highlights the importance of the circadian clock in maintaining vascular homeostasis and demonstrates that specific deletion of BMAL1 in endothelial and hematopoietic cells results in phenotypic features similar to those of diabetes.

Details

ISSN :
00029440
Volume :
187
Database :
OpenAIRE
Journal :
The American Journal of Pathology
Accession number :
edsair.doi.dedup.....5e82e563d955f1cdcc0704e4365c9bd7