Back to Search Start Over

G-Quadruplex Structures in Bacteria: Biological Relevance and Potential as an Antimicrobial Target

Authors :
Monika Kumari
Tarun Kumar Sharma
Shalini Verma
Vikas Yadav
Puja Yadav
Amit Kumar
Nayun Kim
Source :
J Bacteriol
Publication Year :
2021
Publisher :
American Society for Microbiology, 2021.

Abstract

DNA strands consisting of multiple runs of guanines can adopt a noncanonical, four-stranded DNA secondary structure known as G-quadruplex or G4 DNA. G4 DNA is thought to play an important role in transcriptional and translational regulation of genes, DNA replication, genome stability, and oncogene expression in eukaryotic genomes. In other organisms, including several bacterial pathogens and some plant species, the biological roles of G4 DNA and G4 RNA are starting to be explored. Recent investigations showed that G4 DNA and G4 RNA are generally conserved across plant species. In silico analyses of several bacterial genomes identified putative guanine-rich, G4 DNA-forming sequences in promoter regions. The sequences were particularly abundant in certain gene classes, suggesting that these highly diverse structures can be employed to regulate the expression of genes involved in secondary metabolite synthesis and signal transduction. Furthermore, in the pathogen Mycobacterium tuberculosis, the distribution of G4 motifs and their potential role in the regulation of gene transcription advocate for the use of G4 ligands to develop novel antitubercular therapies. In this review, we discuss the various roles of G4 structures in bacterial DNA and the application of G4 DNA as inhibitors or therapeutic agents to address bacterial pathogens.

Details

ISSN :
10985530 and 00219193
Volume :
203
Database :
OpenAIRE
Journal :
Journal of Bacteriology
Accession number :
edsair.doi.dedup.....5e7e59d9f5384b5e5b314e6eefe683d4
Full Text :
https://doi.org/10.1128/jb.00577-20