Back to Search Start Over

Explainability of Deep SAR ATR Through Feature Analysis

Authors :
Alessio Balleri
Carole Belloni
Thomas Merlet
Nabil Aouf
Jean-Marc Le Caillec
Centre for Electronic Warfare, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, SN6 8LA, UK
Département lmage et Traitement Information (IMT Atlantique - ITI)
IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
City University of London
Equipe Marine Mapping & Metrology (Lab-STICC_M3)
Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC)
École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)
THALES
Source :
IEEE Transactions on Aerospace and Electronic Systems, IEEE Transactions on Aerospace and Electronic Systems, Institute of Electrical and Electronics Engineers, 2021, pp.1-1. ⟨10.1109/TAES.2020.3031435⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

Understanding the decision-making process of deep learning networks is a key challenge that has rarely been investigated for synthetic aperture radar (SAR) images. In this article, a set of new analytical tools is proposed and applied to a convolutional neural network (CNN) handling automatic target recognition on two SAR datasets containing military targets. First, an analysis of the respective influence of target, shadow, and background areas on classification performance is carried out. The shadow appears to be the least used portion of the image affecting the decision process, compared to the target and clutter, respectively. Second, the location of the most influential features is determined with classification maps obtained by systematically hiding specific target parts and registering the associated classification rate relative to the images to be classified. The location of the image areas without which classification fails is target type and orientation specific. Nonetheless, a strong contribution of specific parts of the target, such as the target top and the areas facing the radar, is noticed. Finally, results show that features are increasingly activated along the CNN depth according to the target type and its orientation, even though target orientation is absent from the loss function.

Details

Language :
English
ISSN :
00189251
Database :
OpenAIRE
Journal :
IEEE Transactions on Aerospace and Electronic Systems, IEEE Transactions on Aerospace and Electronic Systems, Institute of Electrical and Electronics Engineers, 2021, pp.1-1. ⟨10.1109/TAES.2020.3031435⟩
Accession number :
edsair.doi.dedup.....5e654112b524ad7e08ed041ed0f7a2ee
Full Text :
https://doi.org/10.1109/TAES.2020.3031435⟩